• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pandas 数据索引与选取的实现方法

python 搞代码 4年前 (2022-01-09) 26次浏览 已收录 0个评论

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。

其对应使用的方法如下:
一. 行,列 –> df[]
二. 区域   –> df.loc[], df.iloc[], df.ix[]
三. 单元格 –> df.at[], df.iat[]

下面开始练习:

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randn(6,4), index=list('abcdef'), columns=list('ABCD'))

1. df[]:

一维
行维度:
    整数切片、标签切片、<布尔数组>
列维度:
    标签索引、标签列表、Callable

df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行

df['A']
<p>本文来源gao!daima.com搞$代!码#网#</p>df[['A','B']]
df[lambda df: df.columns[0]] # Callable

2. df.loc[]

二维,先行后列
行维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
列维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable

df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]
df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0]     # a行大于0的列
df.loc[:, df.iloc[0]>0]      # 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]
df.A.loc[lambda s: s > 0]

3. df.iloc[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、<布尔数组>
列维度:
    整数索引、整数切片、整数列表、<布尔数组>、Callable

df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :]    #× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] #×
df.iloc[df.iloc[:,0]>0, :] #×
df.iloc[lambda _df: [0, 1], :]
df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] #×
df.iloc[:, df.iloc[0]>0] #×
df.iloc[:, lambda _df: [0, 1]]

4. df.ix[]

二维,先行后列
行维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable
列维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable

df.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :]

df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]
df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]]

df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pandas 数据索引与选取的实现方法
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址