• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

详解KMP算法以及python如何实现

python 搞代码 4年前 (2022-01-08) 16次浏览 已收录 0个评论

这篇文章主要介绍了KMP算法的相关知识以及python如何实现,帮助大家更好的进行数据分析,感兴趣的朋友可以了解下

算法思路

Knuth-Morris-Pratt(KMP)算法是解决字符串匹配问题的经典算法,下面通过一个例子来演示一下:

给定字符串”BBC ABCDAB ABCDABCDABDE”,检查里面是否包含另一个字符串”ABCDABD”。

1.从头开始依次匹配字符,如果不匹配就跳到下一个字符

2.直到发现匹配字符,然后经过一个内循环严查字符串是否匹配

 

3.发现最后一个D不匹配,下面就该思考应该把字符串向右移动多少个位置呢?传统做法可能是移动一格,KMP算法就创新在这里。KMP算法通过查询一个Partial Match Table(表内存有字符串信息),然后计算出需要移动的步数,这个表后面会介绍怎么来的。

这里我们看到D前面是B,查表得到第二个B对应的是2,所以 移动数 = 已匹配字符数 – 查表所得数 也就是 6 – 2 = 4, 需要向右移动四格。

下面也是重复这个步骤

直到发现匹配或者字符长度超出(未发现匹配)。

Partial Match Table

那么这个查询的表是怎么来的呢?仍然以”ABCDABD”为例

- ”A”的前缀和后缀都为空集,共有元素的长度为0;

- ”AB”的前缀为[A],后缀为[B],共有元素的长度为0;

- ”ABC”的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

- ”ABCD”的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

- ”ABCDA”的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为”A”,长度为1;

- ”ABCDAB”的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为”AB”,长度为2;

- ”ABCDABD”的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

python实现

 def p<div style="color:transparent">来源gaodai^.ma#com搞#代!码网</div>artial_table(p): '''''partial_table("ABCDABD") -> [0, 0, 0, 0, 1, 2, 0]''' prefix = set() res = [0] for i in range(1, len(p)): prefix.add(p[:i]) postfix = {p[j:i + 1] for j in range(1, i + 1)} #print(p[:i+1],prefix,postfix,prefix & postfix or {''}) res.append(len((prefix & postfix or {''}).pop())) return res def kmp_match(s, p): m = len(s); n = len(p) cur = 0 # 起始指针cur table = partial_table(p) while cur <= m - n:   #只去匹配前m-n个 for i in range(n): if s[i + cur] != p[i]: cur += max(i - table[i - 1], 1) # 有了部分匹配表,我们不只是单纯的1位1位往右移,可以一次移动多位 break else: return True # loop从 break 中退出时,else 部分不执行。 return False print partial_table1("ABCDABD") print kmp_match("BBC ABCDAB ABCDABCDABDE", "ABCDABD")

以上就是详解KMP算法以及python如何实现的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:详解KMP算法以及python如何实现

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址