• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

keras ConvLSTM2D 官方例子

python 海叔叔 4年前 (2021-11-08) 36次浏览 已收录 0个评论

keras ConvLSTM2D 官方例子

""" This script demonstrates the use of a convolutional LSTM network.
This network is used to predict the next frame of an artificially
generated movie which contains moving squares.
"""
from keras.models import Sequential
from keras.layers.convolutional import Conv3D
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.normalization import BatchNormalization
import numpy as np
import pylab as plt
 
# We create a layer which take as input movies of shape
# (n_frames, width, height, channels) and returns a movie
# of identical shape.
 
seq = Sequential()
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   input_shape=(None, 40, 40, 1),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())
 
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())
 
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())
 
 
seq.add(ConvLSTM2D(filters=40, kernel_size=(3, 3),
                   padding='same', return_sequences=True))
seq.add(BatchNormalization())
 
seq.add(Conv3D(filters=1, kernel_size=(3, 3, 3),
               activation='sigmoid',
               padding='same', data_format='channels_last'))
seq.compile(loss='binary_crossentropy', optimizer='adadelta')
 
 
# Artificial data generation:
# Generate movies with 3 to 7 moving squares inside.
# The squares are of shape 1x1 or 2x2 pixels,
# which move linearly over time.
# For convenience we first create movies with bigger width and height (80x80)
# and at the end we select a 40x40 window.
 
def generate_movies(n_samples=1200, n_frames=15):
    row = 80
    col = 80
    noisy_movies = np.zeros((n_samples, n_frames, row, col, 1), dtype=np.float)
    shifted_movies = np.zeros((n_samples, n_frames, row, col, 1),
                              dtype=np.float)
 
    for i in range(n_samples):
        # Add 3 to 7 moving squares
        n = np.random.randint(3, 8)
 
        for j in range(n):
            # Initial position
            xstart = np.random.randint(20, 60)
            ystart = np.random.randint(20, 60)
            # Direction of motion
            directionx = np.random.randint(0, 3) - 1
            directiony = np.random.randint(0, 3) - 1
 
            # Size of the square
            w = np.random.randint(2, 4)
 
            for t in range(n_frames):
                x_shift = xstart + directionx * t
                y_shift = ystart + directiony * t
                noisy_movies[i, t, x_shift - w: x_shift + w,
                             y_shift - w: y_shift + w, 0] += 1
 
                # Make it more robust by adding noise.
                # The idea is that if during inference,
                # the value of the pixel is not exactly one,
                # we need to train the network to be robust and still
                # consider it as a pixel belonging to a square.
                if np.random.randint(0, 2):
                    noise_f = (-1)**np.random.randint(0, 2)
                    noisy_movies[i, t,
                                 x_shift - w - 1: x_shift + w + 1,
                                 y_shift - w - 1: y_shift + w + 1,
                                 0] += noise_f * 0.1
 
                # Shift the ground truth by 1
                x_shift = xstart + directionx * (t + 1)
                y_shift = ystart + directiony * (t + 1)
                shifted_movies[i, t, x_shift - w: x_shift + w,
                               y_shift - w: y_shift + w, 0] += 1
 
    # Cut to a 40x40 window
    noisy_movies = noisy_movies[::, ::, 20:60, 20:60, ::]
    shifted_movies = shifted_movies[::, ::, 20:60, 20:60, ::]
    noisy_movies[noisy_movies >= 1] = 1
    shifted_movies[shifted_movies >= 1] = 1
    return noisy_movies, shifted_movies
 
# Train the network
noisy_movies, shifted_movies = generate_movies(n_samples=1200)
 
 
'''
seq.fit(noisy_movies[:1000], shifted_movies[:1000], batch_size=10,
        epochs=300, validation_split=0.05)
# Testing the network on one movie
# feed it with the first 7 positions and then
# predict the new positions
which = 1004
track = noisy_movies[which][:7, ::, ::, ::]
for j in range(16):
    new_pos = seq.predict(track[np.newaxis, ::, ::, ::, ::])
    new = new_pos[::, -1, ::, ::, ::]
    track = np.concatenate((track, new), axis=0)
# And then compare the predictions
# to the ground truth
track2 = noisy_movies[which][::, ::, ::, ::]
for i in range(15):
    fig = plt.figure(figsize=(10, 5))
    ax = fig.add_subplot(121)
    if i >= 7:
        ax.text(1, 3, 'Predictions !', fontsize=20, color='w')
    else:
        ax.text(1, 3, 'Initial trajectory', fontsize=20)
    toplot = track[i, ::, ::, 0]
    plt.imshow(toplot)
    ax = fig.add_subplot(122)
    plt.text(1, 3, 'Ground truth', fontsize=20)
    toplot = track2[i, ::, ::, 0]
    if i >= 2:
        toplot = shifted_movies[which][i - 1, ::, ::, 0]
    plt.imshow(toplot)
plt.savefig('%i_animate.png' % (i + 1))
'''

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:keras ConvLSTM2D 官方例子
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址