假如咱们有这样一种数据:
data = [ ("apple", 30), ("apple", 35), ("apple", 32), ("pear", 60), ("pear", 32), ("pear", 60), ("banana", 102), ("banana", 104) ] # 咱们心愿变成如下格局 """ [('apple', [30, 35, 32]), ('pear', [60, 32, 60]), ('banana', [102, 104])] """
如果是你的话,你会怎么做呢?很容易想到的一种解决方案是结构一个字典:
data = [ ("apple", 30), ("apple", 35), ("apple", 32), ("pear", 60), ("pear", 32), ("pear", 60), ("banana", 102), ("banana", 104) ] data_dict = {} for name, count in data: if name not in data_dict: data_dict[name] = [] data_dict[name].append(count) print(data_dict) """ {'apple': [30, 35, 32], 'pear': [60, 32, 60], 'banana': [102, 104]} """ print(list(data_dict.items())) """ [('apple', [30, 35, 32]), ('pear', [60, 32, 60]), ('banana', [102, 104])] """
这种计划齐全没有问题,不过咱们还能够写的更优雅一些,也就是应用字典的 setdefault 办法:
data = [ ("apple", 30), ("apple", 35), ("apple", 32), ("pear", 60), ("pear", 32), ("pear", 60), ("banana", 102), ("banana", 104) ] data_dict = {} for name, count in data: # setdefault(k, v) 含意如下 # 当 k 不存在时,将 k: v 设置在字典中,并返回 v # 当 k 存在时,间接返回 k 对应值 data_dict.setdefault(name, []).append(count) print(list(data_dict.items())) """ [('apple', [30, 35, 32]), ('pear', [60, 32, 60]), ('banana', [102, 104])] """
setdefault 是一个十分不便的办法,然而应用频率却不怎么高,或者说该办法不太让人喜爱。次要是每次调用都要给一个初始值,比方代码中的空列表 []。另外这里的初始值能够任意,如果你心愿增加的时候还能实现去重成果,那么就将空列表换成空集合即可。
或者咱们还能够应用 defaultdict,它位于 collections 模块中。
from collections import defaultdict data = [ ("apple", 30), ("apple", 35), ("apple", 32), ("pear", 60), ("pear", 32), ("pear", 60), ("banana", 102), ("banana", 104) ] # 外面接管一个 callable # 当拜访的 k 不存在时,返回 callable 调用之后的值 data_dict1 = defaultdict(list) for name, count in data: data_dict1[name].append(count) print(list(data_dict1.items())) """ [('apple', [30, 35, 32]), ('pear', [60, 32, 60]), ('banana', [102, 104])] """ # 也能够指定为 set data_dict2 = defaultdict(set) for name, count in data: data_dict2[name].add(count) print(list(data_dict2.items())) """ [('apple', {32, 35, 30}), ('pear', {32, 60}), ('banana', {104, 102})] """
总的来说,defaultdict 和字典的 setdefault 办法十分相似,咱们应用 setdefault 即可。
当然啦,对于分组,还有一种非凡状况,就是词频统计。假如咱们想统计可迭代对象中,每个元素呈现的次数该怎么做呢?
data = ["apple", "apple", "apple", "pear", "pear", "pear", "banana", "banana"] data_dict = {} for item in data: # 此处不能应用 setdefault,因为它是函数 # .setdefault(item, 0) += 1 是不合乎语法规定的 if item not in data_dict: data_dict[item] = 0 data_dict[item] += 1 print(data_dict) """ {'apple': 3, 'pear': 3, 'banana': 2} """ # 或者应用 defaultdict from collections import defaultdict data_dict = defaultdict(int) for item in data: data_dict[item] += 1 print(data_dict) """ defaultdict(<class 'int'>, {'apple': 3, 'pear': 3, 'banana': 2}) """
然而说到词频统计,咱们还能够应用 collections 下的 Counter 类。
from collections import Counter data = ["apple", "apple", "apple", "pear", "pear", "pear", "banana", "banana"] data_dict = Counter(data) # 间接搞定,Counter 曾经蕴含了咱们之前的逻辑 print(data_dict) """ Counter({'apple': 3, 'pear': 3, 'banana': 2}) """ # Counter 继承 dict,除了反对字典操作之外 # 还提供了很多其它操作,其中一个就是 most_common # 用于抉择呈现频率最高的几个元素 print(data_dict.most_common(2)) """ [('apple', 3), ('pear', 3)] """
还是很简略的。
以上就是本次分享的所有内容,如果你感觉文章还不错,欢送关注公众号:Python编程学习圈,每日干货分享,发送“J”还可支付大量学习材料,内容笼罩Python电子书、教程、数据库编程、Django,爬虫,云计算等等。或是返回编程学习网,理解更多编程技术常识。