本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。
以下文章来源于CDA数据分析师 ,作者CDA数据分析师
前言
《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。
民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。
《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”
那么哪个国家在总体幸福指数上排名最高?
哪些因素对幸福指数的影响最大?
今天我们就带你用Python来聊一聊。
数据理解
关键字段含义解释:
1. rank:幸福指数排名
2. region:国家
3. happiness:幸福指数得分
4. gdp_per_capita:GDP(人均国内生产总值)
5. healthy_life_expectancy:健康预期寿命
6. freedom_to_life_choise:自由权
7. generosity:慷慨程度
8. year:年份
9. corruption_perceptions:清廉指数
10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)
数据导入和数据整理
首先导入所需包。
<code><span class="hljs-comment"># 读入数据 df_2015 = pd.read_csv(<span class="hljs-string">"./deal_data/2015.csv") df_2016 = pd.read_csv(<span class="hljs-string">"./deal_data/2016.csv") df_2017 = pd.read_csv(<span class="hljs-string">"./deal_data/2017.csv") df_2018 = pd.read_csv(<span class="hljs-string">"./deal_data/2018.csv") df_2019 = pd.read_csv(<span class="hljs-string">"./deal_data/2019.csv") <span class="hljs-comment"># 新增列-年份 df_2015[<span class="hljs-string">"year"] = str(<span class="hljs-number">2015) df_2016[<span class="hljs-string">"year"] = str(<span class="hljs-number">2016) df_2017[<span class="hljs-string">"year"] = str(<span class="hljs-number">2017) df_2018[<span class="hljs-string">"year"] = str(<span class="hljs-number">2018) df_2019[<span class="hljs-string">"year"] = str(<span class="hljs-number">2019) <span class="hljs-comment"># 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=<span class="hljs-keyword">False) df_all.drop(<span class="hljs-string">"Unnamed: 0", axis=<span class="hljs-number">1, inplace=<span class="hljs-keyword">True) df_all.head() </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
www#gaodaima.com来源gao($daima.com搞@代@#码网搞代码
<code><span class="hljs-comment"># 读入数据 df_2015 = pd.read_csv(<span class="hljs-string">"./deal_data/2015.csv") df_2016 = pd.read_csv(<span class="hljs-string">"./deal_data/2016.csv") df_2017 = pd.read_csv(<span class="hljs-string">"./deal_data/2017.csv") df_2018 = pd.read_csv(<span class="hljs-string">"./deal_data/2018.csv") df_2019 = pd.read_csv(<span class="hljs-string">"./deal_data/2019.csv") <span class="hljs-comment"># 新增列-年份 df_2015[<span class="hljs-string">"year"] = str(<span class="hljs-number">2015) df_2016[<span class="hljs-string">"year"] = str(<span class="hljs-number">2016) df_2017[<span class="hljs-string">"year"] = str(<span class="hljs-number">2017) df_2018[<span class="hljs-string">"year"] = str(<span class="hljs-number">2018) df_2019[<span class="hljs-string">"year"] = str(<span class="hljs-number">2019) <span class="hljs-comment"># 合并数据 df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=<span class="hljs-keyword">False) df_all.drop(<span class="hljs-string">"Unnamed: 0", axis=<span class="hljs-number">1, inplace=<span class="hljs-keyword">True) df_all.head() </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
<code> <span class="hljs-string">print(df_2015.shape, <span class="hljs-string">df_2016.shape, <span class="hljs-string">df_2017.shape, <span class="hljs-string">df_2018.shape, <span class="hljs-string">df_2019.shape) <span class="hljs-string">(158, <span class="hljs-number">10<span class="hljs-string">) <span class="hljs-string">(157, <span class="hljs-number">10<span class="hljs-string">) <span class="hljs-string">(155, <span class="hljs-number">10<span class="hljs-string">) <span class="hljs-string">(156, <span class="hljs-number">11<span class="hljs-string">) <span class="hljs-string">(156, <span class="hljs-number">11<span class="hljs-string">) <span class="hljs-string">df_all.info() <span class="hljs-string"><class <span class="hljs-string">"pandas.core.frame.DataFrame"<span class="hljs-string">> <span class="hljs-string">Int64Index: <span class="hljs-number">782 <span class="hljs-string">entries, <span class="hljs-number">0 <span class="hljs-string">to <span class="hljs-number">155 <span class="hljs-string">Data <span class="hljs-string">columns <span class="hljs-string">(total <span class="hljs-number">10 <span class="hljs-string">columns): <span class="hljs-string">region <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">object <span class="hljs-string">rank <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">int64 <span class="hljs-string">happiness <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">gdp_per_capita <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">healthy_life_expectancy <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">freedom_to_life_choise <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">corruption_perceptions <span class="hljs-number">781 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">generosity <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">year <span class="hljs-number">782 <span class="hljs-string">non-null <span class="hljs-string">object <span class="hljs-string">social_support <span class="hljs-number">312 <span class="hljs-string">non-null <span class="hljs-string">float64 <span class="hljs-string">dtypes: <span class="hljs-string">float64(7), <span class="hljs-string">int64(1), <span class="hljs-string">object(2) <span class="hljs-string">memory <span class="hljs-string">usage: <span class="hljs-number">67.2<span class="hljs-string">+ <span class="hljs-string">KB </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
数据可视化
2019世界幸福地图
整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。
代码展示:
<code><span class="hljs-keyword">data = dict(type = <span class="hljs-string">"choropleth", locations = df_2019[<span class="hljs-string">"region"], locationmode = <span class="hljs-string">"country names", colorscale = <span class="hljs-string">"RdYlGn", z = df_2019[<span class="hljs-string">"happiness"], text = df_2019[<span class="hljs-string">"region"], colorbar = {<span class="hljs-string">"title":<span class="hljs-string">"Happiness"}) layout = dict(title = <span class="hljs-string">"Geographical Visualization of Happiness Score in 2019", geo = dict(showframe = True, projection = {<span class="hljs-string">"type": <span class="hljs-string">"azimuthal equal area"})) choromap3 = go.Figure(<span class="hljs-keyword">data = [<span class="hljs-keyword">data], layout=layout) plot(choromap3, filename=<span class="hljs-string">"./html/世界幸福地图.html") </span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
2019世界幸福国家排行Top10
2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。
代码展示:
<code># 合并数据 rank_top10 = df_2019.head(<span class="hljs-number">10)<span class="hljs-string">[["rank", "region", "happiness"]] last_top10 = df_2019.tail(<span class="hljs-number">10)<span class="hljs-string">[["rank", "region", "happiness"]] rank_concat = pd.<span class="hljs-built_in">concat([rank_top10, last_top10]) # 条形图 fig = px.bar(rank_concat, x=<span class="hljs-string">"region", y=<span class="hljs-string">"happiness", color=<span class="hljs-string">"region", title=<span class="hljs-string">"World"s happiest and least happy countries in 2019") plot(fig, filename=<span class="hljs-string">"./html/2019世界幸福国家排行Top10和Last10.html") </span></span></span></span></span></span></span></span></span></span></code>
幸福指数相关性
我们可以得出以下结论:
- 从影响因素相关性热力图可以看出,在影响幸福得分的因素中,GDP、社会支持、健康预期寿命呈现高度相关,自由权呈现中度相关,国家的廉政水平呈现低度相关,慷慨程度则呈现极低的相关性;
- GDP与健康预期寿命、社会支持之间存在高度相关。说明GDP高的国家,医疗水平和社会福利较为完善,人民的预期寿命也会越高;
- 健康预期寿命与社会支持之间存在中度相关性。
以下分别观察各个因素的影响程度。
GDP和幸福得分
人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。
代码展示:
<code><span class="hljs-comment"># 散点图 <span class="hljs-attribute">fig = px.scatter(df_all, x=<span class="hljs-string">"gdp_per_capita", y=<span class="hljs-string">"happiness", facet_row=<span class="hljs-string">"year", color=<span class="hljs-string">"year", trendline=<span class="hljs-string">"ols" ) fig.update_layout(height=<span class="hljs-number">800, title_text=<span class="hljs-string">"GDP per capita and Happiness Score") plot(fig, filename=<span class="hljs-string">"./html/GDP和幸福得分.html") </span></span></span></span></span></span></span></span></span></span></code>
健康预期寿命和幸福得分
健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。
代码展示:
<code> 散点图 fig = px.scatter(df_all, x=<span class="hljs-string">"healthy_life_expectancy", y=<span class="hljs-string">"happiness", facet_row=<span class="hljs-string">"year", color=<span class="hljs-string">"year", trendline=<span class="hljs-string">"ols" ) fig.update_layout(height=800, title_text=<span class="hljs-string">"Healthy Life Expecancy and Happiness Score") plot(fig, filename=<span class="hljs-string">"./html/健康预期寿命和幸福得分.html") </span></span></span></span></span></span></span></code>