本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理
以下文章来源于财会学习联盟,作者:我是刀哥啊
私信回复“资料”,即可免费领取Python实战案例讲解视频
Python 自动化办公,处理Excel表格视频讲解
https://www.bilibili.com/video/BV1Lh411R7Kd/
www#gaodaima.com来源gaodaimacom搞#代%码网搞代码
前言
这篇文章要做的事情,如标题所述,就是提取多张excel表上的数据或信息,合并汇总到一张新表上,这是我们工作中经常会遇到的事情。
比如将每月销售情况汇总到一张表上进行销售情况分析,比如将各月发票信息汇总到一张表上进行统计分析,还比如将每月工资表上的某些信息汇总到一张表上进行工资成本分析等等。
具体看表即为:
各期科目余额表截图
最后得到的新表为:
要实现上述目标,可以分如下四步进行。
1.获取各科目余额表文件路径
将2017年1-12月、2018年1-12月、2019年1-12月及2020年1-6月各期科目余额表放在同一文件夹下,要读取多少个文件,就把多少个文件全部放在同一个文件夹下,如下图。
然后读取所有文件的路径,代码如下。
<code><span class="hljs-number">1dir_xls = [] <span class="hljs-number">2<span class="hljs-keyword">def get_file(folder_path): <span class="hljs-comment">#获取同一文件夹下所有科目余额表各自的文件路径 <span class="hljs-number">3 dir_file = os.listdir(folder_path) <span class="hljs-number">4 <span class="hljs-comment">#print(dir_file) <span class="hljs-number">5 <span class="hljs-keyword">for path <span class="hljs-keyword">in dir_file: <span class="hljs-number">6 <span class="hljs-keyword">if path[<span class="hljs-number">-4:] == <span class="hljs-string">"xlsx" <span class="hljs-keyword">or path[<span class="hljs-number">-3:] == <span class="hljs-string">"xls": <span class="hljs-number">7 whole_path = <span class="hljs-string">r"d:/F:学习/<a href="https://www.gaodaima.com/tag/python" title="查看更多关于python的文章" target="_blank">python</a>/账龄分析/科目余额表/{}".format(path) <span class="hljs-number">8 dir_xls.append(whole_path) <span class="hljs-number">9 <span class="hljs-keyword">return dir_xls</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
2.获取各科目余额表中应收账款一级科目编码所在的行列
比如在2017年科目余额表中,应收账款一级科目编码为“1122”,其所在的单元格为C12,也即为第12行第3列,这里的行号12、列号3,即为其定位。
其余科目余额表同理,均为获取一级科目编码“1122”的行号和列号,获取代码如下。
<code><span class="hljs-string">1dict_row_col <span class="hljs-string">= <span class="hljs-string">{} <span class="hljs-string">2def <span class="hljs-string">get_row_col(dir_xls): <span class="hljs-comment">#获取每一张表中应收账款一级科目编码所在的行号和列号 <span class="hljs-number">3 <span class="hljs-string">for <span class="hljs-string">i <span class="hljs-string">in <span class="hljs-attr">dir_xls: <span class="hljs-number">4 <span class="hljs-comment">#print(i) <span class="hljs-number">5 <span class="hljs-string">account_balance_sheet_data <span class="hljs-string">= <span class="hljs-string">pd.DataFrame(pd.read_excel(i)) <span class="hljs-number">6 <span class="hljs-string">for <span class="hljs-string">a <span class="hljs-string">in <span class="hljs-attr">account_balance_sheet_data.index: <span class="hljs-number">7 <span class="hljs-string">for <span class="hljs-string">b <span class="hljs-string">in <span class="hljs-string">range(len(account_balance_sheet_data.loc[a].values)): <span class="hljs-number">8 <span class="hljs-string">if <span class="hljs-string">account_balance_sheet_data.loc[a].values[b] <span class="hljs-string">== <span class="hljs-attr">"1122": <span class="hljs-number">9 <span class="hljs-string">row <span class="hljs-string">= <span class="hljs-string">a+1 <span class="hljs-number">10 <span class="hljs-string">col <span class="hljs-string">= <span class="hljs-string">b+1 <span class="hljs-number">11 <span class="hljs-string">dict_row_col[i] <span class="hljs-string">= <span class="hljs-string">[row,col] <span class="hljs-number">12 <span class="hljs-string">return <span class="hljs-string">dict_row_col</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
3.获取各科目余额表中应收账款所有二级科目编码
根据获取到的应收账款一级科目编码行号和列号,即根据其定位,再获取每一张表中应收账款所有二级科目编码,并将其不重复且升序排列添加到一张新表中,代码如下。
<code><span class="hljs-string">1def <span class="hljs-string">get_ar_code(dict_row_col): <span class="hljs-number">2 <span class="hljs-string">i <span class="hljs-string">= <span class="hljs-number">0 <span class="hljs-number">3 <span class="hljs-string">ar_list1 <span class="hljs-string">= <span class="hljs-string">[] <span class="hljs-number">4 <span class="hljs-string">ar_list2 <span class="hljs-string">= <span class="hljs-string">[] <span class="hljs-number">5 <span class="hljs-string">for <span class="hljs-string">key <span class="hljs-string">in <span class="hljs-string">dict_row_col.keys(): <span class="hljs-number">6 <span class="hljs-string">workbook <span class="hljs-string">= <span class="hljs-string">xlrd.open_workbook(key) <span class="hljs-number">7 <span class="hljs-string">balance_sheet <span class="hljs-string">= <span class="hljs-string">workbook.sheet_by_index(0) <span class="hljs-number">8 <span class="hljs-string">row <span class="hljs-string">= <span class="hljs-string">dict_row_col[key][0] <span class="hljs-number">9 <span class="hljs-string">col <span class="hljs-string">= <span class="hljs-string">dict_row_col[key][1] <span class="hljs-number">10 <span class="hljs-string">while <span class="hljs-attr">True: <span class="hljs-number">11 <span class="hljs-string">if <span class="hljs-string">"1122" <span class="hljs-string">in <span class="hljs-string">balance_sheet.cell_value(row+1,col-1): <span class="hljs-number">12 <span class="hljs-string">ar_code <span class="hljs-string">= <span class="hljs-string">balance_sheet.cell_value(row+1,col-1) <span class="hljs-number">13 <span class="hljs-string">if <span class="hljs-string">ar_code <span class="hljs-string">not <span class="hljs-string">in <span class="hljs-attr">ar_list1: <span class="hljs-number">14 <span class="hljs-string">ar_list1.append(ar_code) <span class="hljs-number">15 <span class="hljs-attr">else: <span class="hljs-number">16 <span class="hljs-string">pass <span class="hljs-number">17 <span class="hljs-string">row <span class="hljs-string">= <span class="hljs-string">row+1 <span class="hljs-number">18 <span class="hljs-attr">else: <span class="hljs-number">19 <span class="hljs-string">break <span class="hljs-number">20 <span class="hljs-string">ar_list1.append("科目编码") <span class="hljs-number">21 <span class="hljs-string">ar_list1.sort(reverse=False) <span class="hljs-comment">#科目编码列表升序排列 <span class="hljs-number">22 <span class="hljs-comment">#将“科目编码”从最后一个元素整体移动到第一个元素 <span class="hljs-number">23 <span class="hljs-string">ar_list2.append(ar_list1[len(ar_list1)-1]) <span class="hljs-number">24 <span class="hljs-string">for <span class="hljs-string">i <span class="hljs-string">in <span class="hljs-string">range(1,len(ar_list1)): <span class="hljs-number">25 <span class="hljs-string">ar_list2.append(ar_list1[i-1]) <span class="hljs-number">26 <span class="hljs-comment">#将所有元素写入到excel表中 <span class="hljs-number">27 <span class="hljs-string">for <span class="hljs-string">i <span class="hljs-string">in <span class="hljs-string">range(len(ar_list2)): <span class="hljs-number">28 <span class="hljs-string">ar_sheet.write(i,0,ar_list2[i])</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
得到的新表内容如下。
由上可看出,2017年至2020年1-6月,四张科目余额表,应收账款共有617个二级科目,对应着617个不同的客户。
4.根据二级科目索引获取全部所需信息
此步的操作过程,即上一篇《如何用python实现excel中的vlookup功能?》所分享的过程,这里就不再详述了,代码如下。
<code><span class="hljs-number">1<span class="hljs-keyword">def get_ar_info(dict_row_col): <span class="hljs-number">2 <span class="hljs-comment">#读取导入目标表 <span class="hljs-number">3 file_target = <span class="hljs-string">r"d:F:学习python账龄分析AR.xls" <span class="hljs-number">4 list_ar_code = [] <span class="hljs-number">5 workbook = xlrd.open_workbook(file_target) <span class="hljs-number">6 balance_sheet = workbook.sheet_by_index(<span class="hljs-number">0) <span class="hljs-number">7 rows = balance_sheet.nrows <span class="hljs-number">8 <span class="hljs-keyword">for i <span class="hljs-keyword">in range(<span class="hljs-number">1,rows): <span class="hljs-number">9 list_ar_code.append(balance_sheet.cell_value(i,<span class="hljs-number">0)) <span class="hljs-number">10 <span class="hljs-comment">#print(list_ar_code) <span class="hljs-number">11 data = {<span class="hljs-string">"科目编码":list_ar_code} <span class="hljs-number">12 df_target = pd.DataFrame(data) <span class="hljs-number">13 <span class="hljs-number">14 <span class="hljs-keyword">for key <span class="hljs-keyword">in dict_row_col.keys(): <span class="hljs-number">15 <span class="hljs-comment">#读取原始数据来源表 <span class="hljs-number">16 file_source = key <span class="hljs-number">17 df_source = pd.read_excel(file_source) <span class="hljs-number">18 <span class="hljs-comment">#将原始数据来源表及导入目标表信息合并到同一表上 <span class="hljs-number">19 dfneed = df_source[[<span class="hljs-string">"科目编码",<span class="hljs-string">"科目名称",<span class="hljs-string">"期初借方",<span class="hljs-string">"期初贷方",<span class="hljs-string">"本期发生借方",<span class="hljs-string">"本期发生贷方",<span class="hljs-string">"期末借方",<span class="hljs-string">"期末贷方"]] <span class="hljs-number">20 df_target = pd.merge(df_target,dfneed,how=<span class="hljs-string">"left",on=<span class="hljs-string">"科目编码") <span class="hljs-number">21 df_target.to_excel(file_target,index=<span class="hljs-literal">False)</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
5.最终目标实现
前四步即为封装的四个函数,每个函数为其中一个步骤,最终汇总可以实现此文总体目标,调用代码及运行代码如下。
<code><span class="hljs-number">1<span class="hljs-keyword">import os <span class="hljs-number">2<span class="hljs-keyword">import pandas <span class="hljs-keyword">as pd <span class="hljs-number">3<span class="hljs-keyword">import xlrd,xlwt <span class="hljs-number">4 <span class="hljs-number">5folder_path = <span class="hljs-string">r"d:F:学习python账龄分析科目余额表" <span class="hljs-number">6f = xlwt.Workbook() <span class="hljs-number">7ar_sheet = f.add_sheet(<span class="hljs-string">u"ar_sheet",cell_overwrite_ok=<span class="hljs-literal">True) <span class="hljs-number">8dir_xls = get_file(folder_path) <span class="hljs-number">9dict_row_col = get_row_col(dir_xls) <span class="hljs-number">10get_ar_code(dict_row_col) <span class="hljs-number">11f.save(<span class="hljs-string">r"d:F:学习python账龄分析AR.xls") <span class="hljs-number">12get_ar_info(dict_row_col)</span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></code>
运行后生成的表格如下。
再经过简单整理后,便可得出上文最终表格,至此实现了从多张excel表中提取所需数据或信息并汇总到同一张新表上的目的。