本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。
以下文章最早早起Python ,作者投稿君
前言
大家好,在之前我们讲过如何使用Python内置一个带有GUI的爬虫小程序,很多这里将迎合热点,延续上次的NBA爬虫GUI,探讨如何爬取虎扑NBA官网数据。 并且将数据写入Excel中同时自动生成折线图,主要有以下几个步骤
本文将分为以下两个部分进行讲解
- 在虎扑NBA官网球员页面中进行爬虫,获取球员数据。
- 清洗整理爬取的球员数据,进行进行可视化。
项目主要涉及的Python模块:
- requests
- pandas
- bs4
爬虫部分
爬虫部分整理思路如下
观察URL1的源代码找到球队名称与对应URL2观察URL2的源代码找到球员对应的URL3观察URL3源代码找到对应球员基本信息与比赛数据并进行筛选存储
其实爬虫就是在html上操作,而html的结构很简单就只有一个,就是一个大框套一个小框,小框在套小框,这样的一层层叠。
目标URL如下:
网址1:http://<a href="https://www.gaodaima.com/tag/nba" title="查看更多关于nba的文章" target="_blank">nba</a>.hupu.com/players/<span> URL2(此处以湖人球队为例):https:</span>//nba.hupu.com/players/<span>lakers URL3(此处以詹姆斯为例):https:</span>//nba.hupu.com/players/lebronjames-650.html
www#gaodaima.com来源gao@daima#com搞(%代@#码网搞代码
先引用模块
<span>from</span> bs4 <span>import</span><span> BeautifulSoup </span><span>import</span><span> requests </span><span>import</span><span> xlsxwriter </span><span>import</span> os
查看URL1源代码,可以看到球队名词及其对应的URL2在span标签中<span class><a href = “…”>下,看上去找到它的父框与祖父框,下面的思路都是如此,图如下:
此时,可以通过requests模块与bs4模块进行有目的性的索引,得到球队的名称列表。
<span>def</span><span> Teamlists(url): TeamName</span>=<span>[] TeamURL</span>=<span>[] GET</span>=<span>requests.get(URL1) soup</span>=BeautifulSoup(GET.content,<span>"</span><span>lxml</span><span>"</span><span>) lables</span>=soup.select(<span>"</span><span>html body div div div ul li span a</span><span>"</span><span>) </span><span>for</span> lable <span>in</span><span> lables: ballname</span>=<span>lable.get_text() TeamName.append(ballname) </span><span>print</span><span>(ballname) teamname</span>=input(<span>"</span><span>请输入想查询的球队名:</span><span>"</span>)<span>#</span><span>此处可变为GUI界面中的按键值</span> c=<span>TeamName.index(teamname) </span><span>for</span> item <span>in</span><span> lables: HREF</span>=item.get(<span>"</span><span>href</span><span>"</span><span>) TeamURL.append(HREF) URL2</span>=<span>TeamURL[c] </span><span>return</span> URL2
就此得到了对应球队的URL2,接着观察URL2网页的内容,可以看到球员名称在标签a中<a target = “_blank” href = ….>下,同时也放置着对应球员的URL3,如下图:
此时,故依然通过requests模块与bs4模块进行相对应的索引,得到球员名称列表以及对应的URL3。
<span>#</span><span>自定义函数获取队员列表和对应的URL</span> <span>def</span><span> playerlists(URL2): PlayerName</span>=<span>[] PlayerURL</span>=<span>[] GET2</span>=<span>requests.get(URL1) soup2</span>=BeautifulSoup(GET2.content,<span>"</span><span>lxml</span><span>"</span><span>) lables2</span>=soup2.select(<span>"</span><span>html body div div table tbody tr td b a</span><span>"</span><span>) </span><span>for</span> lable2 <span>in</span><span> lables2: playername</span>=<span>lable2.get_text() PlayerName.append(playername) </span><span>print</span><span>(playername) name</span>=input(<span>"</span><span>请输入球员名:</span><span>"</span>) <span>#</span><span>此处可变为GUI界面中的按键值</span> d=<span>PlayerName.index(name) </span><span>for</span> item2 <span>in</span><span> lables2: HREF2</span>=item2.get(<span>"</span><span>href</span><span>"</span><span>) PlayerURL.append(HREF2) URL3</span>=<span>PlayerURL[d] </span><span>return</span> URL3,name
现在就此得到了对应球队的URL3,接着观察URL3页面的内容,可以看到球员基本信息在标签p下,球员常规赛生涯数据与季后赛生涯数据在标签td下,如下图:
同样,依然通过requests模块与bs4模块进行相对应的索引,得到球员基本信息与职业数据,而对于球员的常规赛与季候赛的职业数据将进行筛选与储存,得到数据列表。
<span>def</span><span> Competition(URL3): data</span>=<span>[] GET3</span>=<span>requests.get(URL3) soup3</span>=BeautifulSoup(GET3.content,<span>"</span><span>lxml</span><span>"</span><span>) lables3</span>=soup3.select(<span>"</span><span>html body div div div div div div div div p</span><span>"</span><span>) lables4</span>=soup3.select(<span>"</span><span>div div table tbody tr td</span><span>"</span><span>) </span><span>for</span> lable3 <span>in</span><span> lables3: introduction</span>=<span>lable3.get_text() </span><span>print</span>(introduction) <span>#</span><span>球员基本信息</span> <span>for</span> lable4 <span>in</span><span> lables4: competition</span>=<span>lable4.get_text() data.append(competition) </span><span>for</span> i <span>in</span><span> range(len(data)): </span><span>if</span> data[i]==<span>"</span><span>职业生涯常规赛平均数据</span><span>"</span><span>: a</span>=data[i+31<span>] a</span>=<span>data.index(a) </span><span>del</span><span>(data[:a]) </span><span>for</span> x <span>in</span><span> range(len(data)): </span><span>if</span> data[x]==<span>"</span><span>职业生涯季后赛平均数据</span><span>"</span><span>: b</span>=<span>data[x] b</span>=<span>data.index(b) </span><span>del</span><span>(data[b:]) </span><span>return</span> data
通过上述网络爬虫得到了以下的数据,提供可视化数据的同时替换绑定之后的GUI界面按键事件:
- 获取NBA中的所有球队的标准名称;
- 通过指定的一只球队获取球队中所有球员的标准名称;
- 通过指定的球员获取到对应的基本信息以及常规赛与季后赛数据;
可视化部分
思路:创建文件夹创建表格和折线图
自定义函数创建表格,运用os模块进行编写,返回已创建文件夹的路径,代码如下:
<span>def</span> file_add(path): <span>#</span><span>此时的内函数path可与GUI界面的Statictext绑定</span> creatpath=path+<span>"</span><span>Basketball</span><span>"</span> <span>try</span><span>: </span><span>if</span> <span>not</span><span> os.path.isdir(creatpath): os.makedirs(creatpath) </span><span>except</span><span>: </span><span>print</span>(<span>"</span><span>文件夹存在</span><span>"</span><span>) </span><span>return</span> creatpath
运用xlsxwriter模块在creatpath路径下的自定义函数创建excel表格同时添加数据与构造折线图,代码如下:
<span>def</span><span> player_chart(name,data,creatpath): </span><span>#</span><span>此为表格名称——球员名称+chart</span> EXCEL=xlsxwriter.Workbook(creatpath+<span>"</span><span></span><span>"</span>+name+<span>"</span><span>chart.xlsx</span><span>"</span><span>) worksheet</span>=<span>EXCEL.add_worksheet(name) bold</span>=EXCEL.add_format({<span>"</span><span>bold</span><span>"</span>:1<span>}) headings</span>=data[:18<span>] worksheet.write_row(</span><span>"</span><span>A1</span><span>"</span>,headings,bold) <span>#</span><span>写入表头</span> num=(len(data))//18<span> a</span>=<span>0 </span><span>for</span> i <span>in</span><span> range(num): a</span>=a+18<span> c</span>=a+18<span> i</span>=i+1<span> worksheet.write_row(</span><span>"</span><span>A</span><span>"</span>+str(i+1),data[a:c]) <span>#</span><span>写入数据</span> chart_col = EXCEL.add_chart({<span>"</span><span>type</span><span>"</span>: <span>"</span><span>line</span><span>"</span>}) <span>#</span><span>创建一个折线图</span> <span> chart_col.add_series({ </span><span>"</span><span>name</span><span>"</span>: <span>"</span><span>=</span><span>"</span>+name+<span>"</span><span>!$R$1</span><span>"</span>, <span>#</span><span>设置折线描述名称</span> <span>"</span><span>categories</span><span>"</span>:<span>"</span><span>=</span><span>"</span>+name+<span>"</span><span>!$A$2:$A$</span><span>"</span>+str(num), <span>#</span><span>设置图表类别标签范围</span> <span>"</span><span>values</span><span>"</span>: <span>"</span><span>=</span><span>"</span>+name+<span>"</span><span>!$R$2:$R$</span><span>"</span>+str(num-1), <span>#</span><span>设置图表数据范围</span> <span>"</span><span>line</span><span>"</span>: {<span>"</span><span>color</span><span>"</span>: <span>"</span><span>red</span><span>"</span>}, }) <span>#</span><span>设置图表线条属性</span> <span>#</span><span>设置图标的标题和想x,y轴信息</span> chart_col.set_title({<span>"</span><span>name</span><span>"</span>: name+<span>"</span><span>生涯常规赛平均得分</span><span>"</span><span>}) chart_col.set_x_axis({</span><span>"</span><span>name</span><span>"</span>: <span>"</span><span>年份 (年)</span><span>"</span><span>}) chart_col.set_y_axis({</span><span>"</span><span>name</span><span>"</span>: <span>"</span><span>平均得分(分)</span><span>"</span><span>}) chart_col.set_style(</span>1) <span>#</span><span>设置图表风格</span> worksheet.insert_chart(<span>"</span><span>A14</span><span>"</span>, chart_col, {<span>"</span><span>x_offset</span><span>"</span>:25, <span>"</span><span>y_offset</span><span>"</span>:3,}) <span>#</span><span>把图标插入工作台中并设置偏移</span> EXCEL.close()
数据表格效果展现,以詹姆斯为例如下
并且然后打开自动生成的Excel,对应的折线图就直接展现出来,无需再次整理!
现在结合任务一的网络爬虫与任务二的数据可视化,可以得到实时的球员常规赛数据与季后赛数据汇总,同时还有实时球员生涯折线图。便可以与上次的GUI界面任务设计中的”可视化”按钮事件绑定,研究者的读者可以自己进一步研究!