本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理
本文来自腾讯云,作者:Python小二
看动漫的小伙伴应该知道最近出了一部神漫《雾山五行》,其以极具特色的水墨画风和超燃的打斗场面广受好评,首集播出不到 24 小时登顶 B 站热搜第一,豆瓣开分 9.5,火爆程度可见一斑,就打斗场面而言,说是最炫动漫也不为过,当然唯一有一点不足之处就是集数有点少,只有 3 集。
看过动图之后,是不是觉得我所说的最炫动漫,并非虚言,接下来我们爬取一些评论,了解一下大家对这部动漫的看法,这里我们选取 B 站、微博和豆瓣这 3 个平台来爬取数据。
爬取 B 站
我们先来爬取 B 站弹幕数据,动漫链接为:https://www.bilibili.com/bangumi/play/ep331423,弹幕链接为:http://comment.bilibili.com/186803402.xml,爬取代码如下:
url = <span>"</span><span>http://comment.bilibili.com/218796492.xml</span><span>"</span><span> req </span>=<span> requests.get(url) html </span>=<span> req.content html_doc </span>= str(html, <span>"</span><span>utf-8</span><span>"</span>) <span>#</span><span> 修改成utf-8</span><span> #</span><span> 解析</span> soup = BeautifulSoup(html_doc, <span>"</span><span>lxml</span><span>"</span><span>) results </span>= soup.find_all(<span>"</span><span>d</span><span>"</span><span>) contents </span>= [x.text <span>for</span> x <span>in</span><span> results] </span><span>#</span><span> 保存结果</span> dic = {<span>"</span><span>contents</span><span>"</span><span>: contents} df </span>=<span> pd.DataFrame(dic) df[</span><span>"</span><span>contents</span><span>"</span>].to_csv(<span>"</span><span>bili.csv</span><span>"</span>, encoding=<span>"</span><span>utf-8</span><span>"</span>, index=False)
www#gaodaima.com来源gao!%daima.com搞$代*!码$网搞代码
如果对爬取 B 站弹幕数据不了解的小伙伴可以看一下:爬取 B 站弹幕。
我们接着将爬取的弹幕数据生成词云,代码实现如下:
<span>def</span><span> jieba_(): </span><span>#</span><span> 打开评论数据文件</span> content = open(<span>"</span><span>bili.csv</span><span>"</span>, <span>"</span><span>rb</span><span>"</span><span>).read() </span><span>#</span><span> jieba 分词</span> word_list =<span> jieba.cut(content) words </span>=<span> [] </span><span>#</span><span> 过滤掉的词</span> stopwords = open(<span>"</span><span>stopwords.txt</span><span>"</span>, <span>"</span><span>r</span><span>"</span>, encoding=<span>"</span><span>utf-8</span><span>"</span>).read().split(<span>"</span><span> </span><span>"</span>)[:-1<span>] </span><span>for</span> word <span>in</span><span> word_list: </span><span>if</span> word <span>not</span> <span>in</span><span> stopwords: words.append(word) </span><span>global</span><span> word_cloud </span><span>#</span><span> 用逗号隔开词语</span> word_cloud = <span>"</span><span>,</span><span>"</span><span>.join(words) </span><span>def</span><span> cloud(): </span><span>#</span><span> 打开词云背景图</span> cloud_mask = np.array(Image.open(<span>"</span><span>bg.png</span><span>"</span><span>)) </span><span>#</span><span> 定义词云的一些属性</span> wc =<span> WordCloud( </span><span>#</span><span> 背景图分割颜色为白色</span> background_color=<span>"</span><span>white</span><span>"</span><span>, </span><span>#</span><span> 背景图样</span> mask=<span>cloud_mask, </span><span>#</span><span> 显示最大词数</span> max_words=500<span>, </span><span>#</span><span> 显示中文</span> font_path=<span>"</span><span>./fonts/simhei.ttf</span><span>"</span><span>, </span><span>#</span><span> 最大尺寸</span> max_font_size=60<span>, repeat</span>=<span>True ) </span><span>global</span><span> word_cloud </span><span>#</span><span> 词云函数</span> x =<span> wc.generate(word_cloud) </span><span>#</span><span> 生成词云图片</span> image =<span> x.to_image() </span><span>#</span><span> 展示词云图片</span> <span> image.show() </span><span>#</span><span> 保存词云图片</span> wc.to_file(<span>"</span><span>cloud.png</span><span>"</span><span>) jieba_() cloud()</span>
看一下效果:
爬取微博
我们再接着爬取动漫的微博评论,我们选择的爬取目标是雾山五行官博顶置的这条微博的评论数据,如图所示:
爬取代码实现如下所示:
<span>urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) </span><span>#</span><span> 爬取一页评论内容</span> <span>def</span><span> get_one_page(url): headers </span>=<span> { </span><span>"</span><span>User-agent</span><span>"</span> : <span>"</span><span>Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/78.0.3880.4 Safari/537.36</span><span>"</span><span>, </span><span>"</span><span>Host</span><span>"</span> : <span>"</span><span>weibo.cn</span><span>"</span><span>, </span><span>"</span><span>Accept</span><span>"</span> : <span>"</span><span>application/json, text/plain, */*</span><span>"</span><span>, </span><span>"</span><span>Accept-Language</span><span>"</span> : <span>"</span><span>zh-CN,zh;q=0.9</span><span>"</span><span>, </span><span>"</span><span>Accept-Encoding</span><span>"</span> : <span>"</span><span>gzip, deflate, br</span><span>"</span><span>, </span><span>"</span><span>Cookie</span><span>"</span> : <span>"</span><span>自己的cookie</span><span>"</span><span>, </span><span>"</span><span>DNT</span><span>"</span> : <span>"</span><span>1</span><span>"</span><span>, </span><span>"</span><span>Connection</span><span>"</span> : <span>"</span><span>keep-alive</span><span>"</span><span> } </span><span>#</span><span> 获取网页 html</span> response = requests.get(url, headers = headers, verify=<span>False) </span><span>#</span><span> 爬取成功</span> <span>if</span> response.status_code == 200<span>: </span><span>#</span><span> 返回值为 html 文档,传入到解析函数当中</span> <span>return</span><span> response.text </span><span>return</span><span> None </span><span>#</span><span> 解析保存评论信息</span> <span>def</span><span> save_one_page(html): comments </span>= re.findall(<span>"</span><span><span class="ctt">(.*?)</span></span><span>"</span><span>, html) </span><span>for</span> comment <span>in</span> comments[1<span>:]: result </span>= re.sub(<span>"</span><span><.*?></span><span>"</span>, <span>""</span><span>, comment) </span><span>if</span> <span>"</span><span>回复@</span><span>"</span> <span>not</span> <span>in</span><span> result: with open(</span><span>"</span><span>wx_comment.txt</span><span>"</span>, <span>"</span><span>a+</span><span>"</span>, encoding=<span>"</span><span>utf-8</span><span>"</span><span>) as fp: fp.write(result) </span><span>for</span> i <span>in</span> range(50<span>): url </span>= <span>"</span><span>https://weibo.cn/comment/Je5bqpmCn?uid=6569999648&rl=0&page=</span><span>"</span>+<span>str(i) html </span>=<span> get_one_page(url) </span><span>print</span>(<span>"</span><span>正在爬取第 %d 页评论</span><span>"</span> % (i+1<span>)) save_one_page(html) time.sleep(</span>3)
对于爬取微博评论不熟悉的小伙伴可以参考:爬取微博评论。
同样的,我们还是将评论生成词云,看一下效果:
爬取豆瓣
最后,我们爬取动漫的豆瓣评论数据,动漫的豆瓣地址为:https://movie.douban.com/subject/30395914/,爬取的实现代码如下:
<span>def</span><span> spider(): url </span>= <span>"</span><span>https://accounts.douban.com/j/mobile/login/basic</span><span>"</span><span> headers </span>= {<span>"</span><span>User-Agent</span><span>"</span>: <span>"</span><span>Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)</span><span>"</span><span>} </span><span>#</span><span> 评论网址,为了动态翻页,start 后加了格式化数字,短评页面有 20 条数据,每页增加 20 条</span> url_comment = <span>"</span><span>https://movie.douban.com/subject/30395914/comments?start=%d&limit=20&sort=new_score&status=P</span><span>"</span><span> data </span>=<span> { </span><span>"</span><span>ck</span><span>"</span>: <span>""</span><span>, </span><span>"</span><span>name</span><span>"</span>: <span>"</span><span>用户名</span><span>"</span><span>, </span><span>"</span><span>password</span><span>"</span>: <span>"</span><span>密码</span><span>"</span><span>, </span><span>"</span><span>remember</span><span>"</span>: <span>"</span><span>false</span><span>"</span><span>, </span><span>"</span><span>ticket</span><span>"</span>: <span>""</span><span> } session </span>=<span> requests.session() session.post(url</span>=url, headers=headers, data=<span>data) </span><span>#</span><span> 初始化 4 个 list 分别存用户名、评星、时间、评论文字</span> users =<span> [] stars </span>=<span> [] times </span>=<span> [] content </span>=<span> [] </span><span>#</span><span> 抓取 500 条,每页 20 条,这也是豆瓣给的上限</span> <span>for</span> i <span>in</span> range(0, 500, 20<span>): </span><span>#</span><span> 获取 HTML</span> data = session.get(url_comment % i, headers=<span>headers) </span><span>#</span><span> 状态码 200 表是成功</span> <span>print</span>(<span>"</span><span>第</span><span>"</span>, i, <span>"</span><span>页</span><span>"</span>, <span>"</span><span>状态码:</span><span>"</span><span>,data.status_code) </span><span>#</span><span> 暂停 0-1 秒时间,防止IP被封</span> <span> time.sleep(random.random()) </span><span>#</span><span> 解析 HTML</span> selector =<span> etree.HTML(data.text) </span><span>#</span><span> 用 xpath 获取单页所有评论</span> comments = selector.xpath(<span>"</span><span>//div[@class="comment"]</span><span>"</span><span>) </span><span>#</span><span> 遍历所有评论,获取详细信息</span> <span>for</span> comment <span>in</span><span> comments: </span><span>#</span><span> 获取用户名</span> user = comment.xpath(<span>"</span><span>.//h3/span[2]/a/text()</span><span>"</span><span>)[0] </span><span>#</span><span> 获取评星</span> star = comment.xpath(<span>"</span><span>.//h3/span[2]/span[2]/@class</span><span>"</span>)[0][7:8<span>] </span><span>#</span><span> 获取时间</span> date_time = comment.xpath(<span>"</span><span>.//h3/span[2]/span[3]/@title</span><span>"</span><span>) </span><span>#</span><span> 有的时间为空,需要判断下</span> <span>if</span> len(date_time) !=<span> 0: date_time </span>=<span> date_time[0] date_time </span>= date_time[:10<span>] </span><span>else</span><span>: date_time </span>=<span> None </span><span>#</span><span> 获取评论文字</span> comment_text = comment.xpath(<span>"</span><span>.//p/span/text()</span><span>"</span><span>)[0].strip() </span><span>#</span><span> 添加所有信息到列表</span> <span> users.append(user) stars.append(star) times.append(date_time) content.append(comment_text) </span><span>#</span><span> 用字典包装</span> comment_dic = {<span>"</span><span>user</span><span>"</span>: users, <span>"</span><span>star</span><span>"</span>: stars, <span>"</span><span>time</span><span>"</span>: times, <span>"</span><span>comments</span><span>"</span><span>: content} </span><span>#</span><span> 转换成 DataFrame 格式</span> comment_df =<span> pd.DataFrame(comment_dic) </span><span>#</span><span> 保存数据</span> comment_df.to_csv(<span>"</span><span>db.csv</span><span>"</span><span>) </span><span>#</span><span> 将评论单独再保存下来</span> comment_df[<span>"</span><span>comments</span><span>"</span>].to_csv(<span>"</span><span>comment.csv</span><span>"</span>, index=<span>False) spider()</span>
对于爬取豆瓣评论不熟悉的小伙伴,可以参考:爬取豆瓣评论。
看一下生成的词云效果: