• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python聚类算法之基本K均值实例详解

python 搞代码 4年前 (2022-01-09) 37次浏览 已收录 0个评论

本文实例讲述了Python聚类算法之基本K均值运算技巧。分享给大家供大家参考,具体如下:

基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所期望的簇的个数。每次循环中,每个点被指派到最近的质心,指派到同一个质心的点集构成一个。然后,根据指派到簇的点,更新每个簇的质心。重复指派和更新操作,直到质心不发生明显的变化。

# scoding=utf-8import pylab as plpoints = [[int(eachpoint.split("#")[0]), int(eachpoint.split("#")[1])] for eachpoint in open("points","r")]# 指定三个初始质心currentCenter1 = [20,190]; currentCenter2 = [120,90]; currentCenter3 = [170,140]pl.plot([currentCenter1[0]], [currentCenter1[1]],'ok')pl.plot([currentCenter2[0]], [currentCenter2[1]],'ok')pl.plot([currentCenter3[0]], [currentCenter3[1]],'ok')# 记录每次迭代后每个簇的质心的更新轨迹center1 = [currentCenter1]; center2 = [currentCenter2]; center3 = [currentCenter3]# 三个簇group1 = []; group2 = []; group3 = []for runtime in range(50):  group1 = []; group2 = []; group3 = []  for eachpoint in points:    # 计算每个点到三个质心的距离    distance1 = pow(abs(eachpoint[0]-currentCenter1[0]),2) + pow(abs(eachpoint[1]-currentCenter1[1]),2)    distance2 = pow(abs(eachpoint[0]-currentCenter2[0]),2) + pow(abs(eachpoint[1]-currentCenter2[1]),2)    distance3 = pow(abs(eachpoint[0]-currentCenter3[0]),2) + pow(abs(eachpoint[1]-currentCenter3[1]),2)    # 将该点指派到离它最近的质心所在的簇    mindis = min(distance1,distance2,distance3)    if(mindis == distance1):      group1.append(eachpoint)    elif(mindis == distance2):      group2.append(eachpoint)    else:      group3.append(eachpoint)  # 指派完所有的点后,更新每个簇的质心  currentCenter<strong>本文来源gaodai#ma#com搞@@代~&码*网2</strong>1 = [sum([eachpoint[0] for eachpoint in group1])/len(group1),sum([eachpoint[1] for eachpoint in group1])/len(group1)]  currentCenter2 = [sum([eachpoint[0] for eachpoint in group2])/len(group2),sum([eachpoint[1] for eachpoint in group2])/len(group2)]  currentCenter3 = [sum([eachpoint[0] for eachpoint in group3])/len(group3),sum([eachpoint[1] for eachpoint in group3])/len(group3)]  # 记录该次对质心的更新  center1.append(currentCenter1)  center2.append(currentCenter2)  center3.append(currentCenter3)# 打印所有的点,用颜色标识该点所属的簇pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og')# 打印每个簇的质心的更新轨迹for center in [center1,center2,center3]:  pl.plot([eachcenter[0] for eachcenter in center], [eachcenter[1] for eachcenter in center],'k')pl.show()

运行效果截图如下:

希望本文所述对大家Python程序设计有所帮助。


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python聚类算法之基本K均值实例详解
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址