• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python实现的最近最少使用算法

python 搞代码 4年前 (2022-01-09) 33次浏览 已收录 0个评论

本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:

# lrucache.py -- a simple LRU (Least-Recently-Used) cache class # Copyright 2004 Evan Prodromou  # Licensed under the Academic Free License 2.1 # Licensed for ftputil under the revised BSD license # with permission by the author, Evan Prodromou. Many # thanks, Evan! :-) # # The original file is available at # http://pypi.python.org/pypi/lrucache/0.2 . # arch-tag: LRU cache main module """a simple LRU (Least-Recently-Used) cache module This module provides very simple LRU (Least-Recently-Used) cache functionality. An *in-memory cache* is useful for storing the results of an 'expe\nsive' process (one that takes a lot of time or resources) for later re-use. Typical examples are accessing data from the filesystem, a database, or a network location. If you know you'll need to re-read the data again, it can help to keep it in a cache. You *can* use a Python dictionary as a cache for some purposes. However, if the results you're caching are large, or you have a lot of possible results, this can be impractical memory-wise. An *LRU cache*, on the other han<span>本文来源gaodai#ma#com搞*代#码9网#</span>d, only keeps _some_ of the results in memory, which keeps you from overusing resources. The cache is bounded by a maximum size; if you try to add more values to the cache, it will automatically discard the values that you haven't read or written to in the longest time. In other words, the least-recently-used items are discarded. [1]_ .. [1]: 'Discarded' here means 'removed from the cache'. """from __future__ import generators import time from heapq import heappush, heappop, heapify # the suffix after the hyphen denotes modifications by the # ftputil project with respect to the original version __version__ = "0.2-1"__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE'] __docformat__ = 'reStructuredText en'DEFAULT_SIZE = 16"""Default size of a new LRUCache object, if no 'size' argument is given."""class CacheKeyError(KeyError):   """Error raised when cache requests fail   When a cache record is accessed which no longer exists (or never did),   this error is raised. To avoid it, you may want to check for the existence   of a cache record before reading or deleting it."""  passclass LRUCache(object):   """Least-Recently-Used (LRU) cache.   Instances of this class provide a least-recently-used (LRU) cache. They   emulate a Python mapping type. You can use an LRU cache more or less like   a Python dictionary, with the exception that objects you put into the   cache may be discarded before you take them out.   Some example usage::   cache = LRUCache(32) # new cache   cache['foo'] = get_file_contents('foo') # or whatever   if 'foo' in cache: # if it's still in cache...     # use cached version     contents = cache['foo']   else:     # recalculate     contents = get_file_contents('foo')     # store in cache for next time     cache['foo'] = contents   print cache.size # Maximum size   print len(cache) # 0 <= len(cache)  %s (%s)>" % \           (self.__class__, self.key, self.obj, \           time.asctime(time.localtime(self.atime)))   def __init__(self, size=DEFAULT_SIZE):     # Check arguments     if size = self.size:         lru = heappop(self.__heap)         del self.__dict[lru.key]       node = self.__Node(key, obj, time.time(), self._sort_key())       self.__dict[key] = node       heappush(self.__heap, node)   def __getitem__(self, key):     if not self.__dict.has_key(key):       raise CacheKeyError(key)     else:       node = self.__dict[key]       # update node object in-place       node.atime = time.time()       node._sort_key = self._sort_key()       heapify(self.__heap)       return node.obj   def __delitem__(self, key):     if not self.__dict.has_key(key):       raise CacheKeyError(key)     else:       node = self.__dict[key]       del self.__dict[key]       self.__heap.remove(node)       heapify(self.__heap)       return node.obj   def __iter__(self):     copy = self.__heap[:]     while len(copy) > 0:       node = heappop(copy)       yield node.key     raise StopIteration   def __setattr__(self, name, value):     object.__setattr__(self, name, value)     # automagically shrink heap on resize     if name == 'size':       while len(self.__heap) > value:         lru = heappop(self.__heap)         del self.__dict[lru.key]   def __repr__(self):     return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))   def mtime(self, key):     """Return the last modification time for the cache record with key.     May be useful for cache instances where the stored values can get     'stale', such as caching file or network resource contents."""    if not self.__dict.has_key(key):       raise CacheKeyError(key)     else:       node = self.__dict[key]       return node.mtime if __name__ == "__main__":   cache = LRUCache(25)   print cache   for i in range(50):     cache[i] = str(i)   print cache   if 46 in cache:     print "46 in cache"    del cache[46]   print cache   cache.size = 10  print cache   cache[46] = '46'  print cache   print len(cache)   for c in cache:     print c   print cache   print cache.mtime(46)   for c in cache:     print c 

希望本文所述对大家的Python程序设计有所帮助。


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python实现的最近最少使用算法
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址