这里我们通过请求网页例子来一步步理解爬虫性能
当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环
简单的循环串行
这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
代码如下:
import requests url_list = [ 'http://www.baidu.com', 'http://www.pythonsite.com', 'http://www.cnblogs.com/' ] for url in url_list: result = requests.get(url) print(result.text)
通过线程池
通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多
import requests from concurrent.futures import ThreadPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(10) for url in url_list: #去线程池中获取一个线程,线程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
线程池+回调函数
这里定义了一个回调函数callback
from concurrent.futures import ThreadPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async,url) #这里调用回调函数 v.add_done_callback(callback) pool.shutdown()
通过进程池
通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好
import<strong>本文来源gaodai#ma#com搞@@代~&码网</strong> requests from concurrent.futures import ProcessPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(10) for url in url_list: #去进程池中获取一个线程,子进程程去执行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
进程池+回调函数
这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源
from concurrent.futures import ProcessPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async, url) # 这里调用回调函数 v.add_done_callback(callback) pool.shutdown()
主流的单线程实现并发的几种方式
- asyncio
- gevent
- Twisted
- Tornado
下面分别是这四种代码的实现例子:
asyncio例子1:
import asyncio @asyncio.coroutine #通过这个装饰器装饰 def func1(): print('before...func1......') # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep yield from asyncio.sleep(2) print('end...func1......') tasks = [func1(), func1()] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(*tasks)) loop.close()