技术背景
在python编码中for循环处理任务时,会将所有的待遍历参量加载到内存中。其实这本没有必要,因为这些参量很有可能是一次性使用的,甚至很多场景下这些参量是不需要同时存储在内存中的,这时候就会用到本文所介绍的迭代生成器yield。
基本使用
首先我们用一个例子来演示一下迭代生成器yield的基本使用方法,这个例子的作用是构造一个函数用于生成一个平方数组。在普通的场景中我们一般会直接构造一个空的列表,然后将每一个计算结果填充到列表中,最后return列表即可,对应的是这里的函数square_number。而另外一个函数square_number_yield则是为了演示yield而构造的函数,其使用语法跟return是一样的,不同的是每次只会返回一个值:
# test_yield.py def square_number(length): s = [] for i in range(length): s.append(i ** 2) return s def square_number_yield(length): for i in range(length): yield i ** 2 if __name__ == '__main__': length = 10 sn1 = square_number(length) sn2 = square_number_yield(length) for i in range(length): print (sn1[i], '\t', end='') print (next(sn2))
在main函数中我们对比了两种方法执行的结果,打印在同一行上面,用end=”指令可以替代行末的换行符号,具体执行的结果如下所示:
[dechin@dechin-manjaro yield]$ python3 test_yield.py <a style="color:transparent">来@源gao*daima.com搞@代#码网</a> 0 0 1 1 4 4 9 9 16 16 25 25 36 36 49 49 64 64 81 81
可以看到两种方法打印出来的结果是一样的。也许有些场景下就是需要持久化的存储函数中返回的结果,这一点用yield也是可以实现的,可以参考如下示例:
# test_yield.py def square_number(length): s = [] for i in range(length): s.append(i ** 2) return s def square_number_yield(length): for i in range(length): yield i ** 2 if __name__ == '__main__': length = 10 sn1 = square_number(length) sn2 = square_number_yield(length) sn3 = list(square_number_yield(length)) for i in range(length): print (sn1[i], '\t', end='') print (next(sn2), '\t', end='') print (sn3[i])
这里使用的方法是直接将yield生成的对象转化成list格式,或者用sn3 = [i for i in square_number_yield(length)]这种写法也是可以的,在性能上应该差异不大。上述代码的执行结果如下:
[dechin@dechin-manjaro yield]$ python3 test_yield.py 0 0 0 1 1 1 4 4 4 9 9 9 16 16 16 25 25 25 36 36 36 49 49 49 64 64 64 81 81 81
进阶测试
在前面的章节中我们提到,使用yield可以节省程序的内存占用,这里我们来测试一个100000大小的随机数组的平方和计算。如果使用正常的逻辑,那么写出来的程序就是如下所示(关于python内存占用的追踪方法,可以参考这一篇博客):
# square_sum.py import tracemalloc import time import numpy as np tracemalloc.start() start_time = time.time() ss_list = np.random.randn(100000) s = 0 for ss in ss_list: s += ss ** 2 end_time = time.time() print ('Time cost is: {}s'.format(end_time - start_time)) snapshot = tracemalloc.take_snapshot() top_stats = snapshot.statistics('lineno') for stat in top_stats[:5]: print (stat)