创建2个DataFrame:
>>> df1 = pd.DataFrame(np.ones((4, 4))*1, columns=list('DCBA'), index=list('4321')) >>> df2 = pd.DataFrame(np.ones((4, 4))*2, columns=list('FEDC'), index=list('6543')) >>> df3 = pd.DataFrame(np.ones((4, 4))*3, columns=list('FEBA'), index=list('6521')) >>> df1 D C B A 4 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 >>> df2 F E D C 6 2.0 2.0 2.0 2.0 5 2.0 2.0 2.0 2.0 4 2.0 2.0 2.0 2.0 3 2.0 2.0 2.0 2.0 >>> df3 F E B A 6 3.0 3.0 3.0 3.0 5 3.0 3.0 3.0 3.0 2 3.0 3.0 3.0 3.0 1 3.0 3.0 3.0 3.0
1,concat
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
示例:
>>> pd.concat([df1, df2]) A B C D E F 4 1.0 1.0 1.0 1.0 NaN NaN 3 1.0 1.0 1.0 1.0 NaN NaN 2 1.0 1.0 1.0 1.0 NaN NaN 1 1.0 1.0 1.0 1.0 NaN NaN 6 NaN NaN 2.0 2.0 2.0 2.0 5 NaN NaN 2.0 2.0 2.0 2.0 4 NaN NaN 2.0 2.0 2.0 2.0 3 NaN NaN 2.0 2.0 2.0 2.0
1.1,axis
默认值:axis=0
axis=0:竖方向(index)合并,合并方向index作列表相加,非合并方向columns取并集
axis=1:横方向(columns)合并,合并方向columns作列表相加,非合并方向index取并集
axis=0:
>>> pd.concat([df1, df2], axis=0) A B C D E F 4 1.0 1.0 1.0 1.0 NaN NaN 3 1.0 1.0 1.0 1.0 NaN NaN 2 1.0 1.0 1.0 1.0 NaN NaN 1 1.0 1.0 1.0 1.0 NaN NaN 6 NaN NaN 2.0 2.0 2.0 2.0 5 NaN NaN 2.0 2.0 2.0 2.0 4 NaN NaN 2.0 2.0 2.0 2.0 3 NaN NaN 2.0 2.0 2.0 2.0
axis=1:
>>> pd.concat([df1, df2], axis=1) D C B A F E D C 1 1.0 1.0 1.0 1.0 NaN NaN NaN NaN 2 1.0 1.0 1.0 1.0 NaN NaN NaN NaN 3 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 4 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 5 NaN NaN NaN NaN 2.0 2.0 2.0 2.0 6 NaN NaN NaN NaN 2.0 2.0 2.0 2.0
备注:原df中,取并集的行/列名称不能有重复项,即axis=0时columns不能有重复项,axis=1时index不能有重复项:
>>> df1.columns = list('DDBA') >>> pd.concat([df1, df2], axis=0) ValueError: Plan shapes are not aligned
1.2,join
默认值:join=‘outer’
非合并方向的行/列名称:取交集(inner),取并集(outer)。
axis=0时join=’inner’,columns取交集:
>>> pd.concat([df1, df2], axis=0, join='inner') D C 4 1.0 1.0 3 1.0 1.0 2 1.0 1.0 1 1.0 1.0 6 2.0 2.0 5 2.0 2.0 4 2.0 2.0 3 2.0 2.0
axis=1时join=’inner’,index取交集:
>>> pd.concat([df1, df2], axis=1, join='inner') D C B A F E D C 4 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 3 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0
1.3,join_axes
默认值:join_axes=None,取并集
合并后,可以
本文来源gao!%daima.com搞$代*!码9网(
设置非合并方向的行/列名称,使用某个df的行/列名称
axis=0时join_axes=[df1.columns],合并后columns使用df1的:
>>> pd.concat([df1, df2], axis=0, join_axes=[df1.columns]) D C B A 4 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 6 2.0 2.0 NaN NaN 5 2.0 2.0 NaN NaN 4 2.0 2.0 NaN NaN 3 2.0 2.0 NaN NaN