• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Pandas之Fillna填充缺失数据的方法

python 搞代码 4年前 (2022-01-09) 20次浏览 已收录 0个评论

约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据

fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 NaN NaN 2.0
2 NaN NaN NaN
3 8.0 8.0 NaN

用常数填充:

df1.fillna(100)

代码结果:

0 1 2
0 1.0 2.0 3.0
1 100.0 100.0 2.0
2 100.0 100.0 100.0
3 8.0 8.0 100.0

通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:

本文来源gaodaimacom搞#代%码@网-

0 1 2
0 1.0 2.0 3.0
1 10.0 20.0 2.0
2 10.0 20.0 30.0
3 8.0 8.0 30.0

传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:

0 1 2
0 1.0 2.0 3.0
1 0.0 0.0 2.0
2 0.0 0.0 0.0
3 8.0 8.0 0.0

传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:

0 1 2 3 4
0 6 6 2 4.0 1.0
1 4 7 0 NaN 5.0
2 6 5 5 NaN NaN
3 1 9 9 NaN NaN
4 4 8 1 5.0 9.0
df2.fillna(method='ffill')#用前面的值来填充

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Pandas之Fillna填充缺失数据的方法
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址