• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Pandas的read_csv函数参数分析详解

python 搞代码 4年前 (2022-01-09) 24次浏览 已收录 0个评论

函数原型

pd.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=No<strong style="color:transparent">本文来源gaodai#ma#com搞@@代~&码网^</strong>ne, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression='infer', thousands=None, decimal=b'.', lineterminator=None, quotechar='"', quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=False, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=False, compact_ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)

必填参数

filepath_or_buffer : str,pathlib。str, pathlib.Path,
py._path.local.LocalPath or any object with a read() method 
(such as a file handle or StringIO)

读取文件路径,可以是URL,可用URL类型包括:http, ftp, s3和文件。

常用参数

sep :str, default ‘,’
指定分隔符。如果不指定参数,则会尝试使用逗号分隔。csv文件一般为逗号分隔符。

delimiter : str, default None
定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace :boolean, default False.
指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep=’\s+’。
如果这个参数设定为Ture那么delimiter 参数失效。

header :int or list of ints, default ‘infer’
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。对于数据读取有表头和没表头的情况很实用

header :int or list of ints, default ‘infer’
指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。

names :  array-like, default None
用于结果的列名列表,对各列重命名,即添加表头。
如数据有表头,但想用新的表头,可以设置header=0,names=[‘a’,’b’]实现表头定制。

index_col : int or sequence or False, default None
用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。
可使用index_col=[0,1]来指定文件中的第1和2列为索引列。

usecols : array-like, default None
返回一个数据子集,即选取某几列,不读取整个文件的内容,有助于加快速度和降低内存。
usecols=[1,2]或usercols=[‘a’,’b’]

squeeze : boolean, default False
如果文件只包含一列,则返回一个Series

prefix :  str, default None
在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, …

mangle_dupe_cols : boolean, default True
重复的列,将‘X’…’X’表示为‘X.0’…’X.N’。如果设定为False则会将所有重名列覆盖。

不太常用参数

dtype : Type name or dict of column -> type, default None
每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}

engine :  {‘c’, ‘python’}, optional
使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Pandas的read_csv函数参数分析详解
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址