python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。
1.numpy的导入和使用
from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式<div style="color:transparent">本文来源gaodai^.ma#com搞#代!码网</div>使用numpy的函数时,需要以np.开头。
2.矩阵的创建
由一维或二维数据创建矩阵
from numpy import *; a1=array([1,2,3]); a1=mat(a1);
创建常见的矩阵
data1=mat(zeros((3,3))); #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3) data2=mat(ones((2,4))); #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int data3=mat(random.rand(2,2)); #这里的random模块使用的是numpy中的random模块,random.rand(2,2)创建的是一个二维数组,需要将其转换成#matrix data4=mat(random.randint(10,size=(3,3))); #生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界则可以多加一个参数 data5=mat(random.randint(2,8,size=(2,5)); #产生一个2-8之间的随机整数矩阵 data6=mat(eye(2,2,dtype=int)); #产生一个2*2的对角矩阵 a1=[1,2,3]; a2=mat(diag(a1)); #生成一个对角线为1、2、3的对角矩阵
3.常见的矩阵运算
1. 矩阵相乘
a1=mat([1,2]); a2=mat([[1],[2]]); a3=a1*a2; #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
2. 矩阵点乘
矩阵对应元素相乘
a1=mat([1,1]); a2=mat([2,2]); a3=multiply(a1,a2);
矩阵点乘
a1=mat([2,2]); a2=a1*2;
3.矩阵求逆,转置
矩阵求逆
a1=mat(eye(2,2)*0.5); a2=a1.I; #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
矩阵转置
a1=mat([[1,1],[0,0]]); a2=a1.T;
4.计算矩阵对应行列的最大、最小值、和。
a1=mat([[1,1],[2,3],[4,2]]);
计算每一列、行的和
a2=a1.sum(axis=0);//列和,这里得到的是1*2的矩阵 a3=a1.sum(axis=1);//行和,这里得到的是3*1的矩阵 a4=sum(a1[1,:]);//计算第一行所有列的和,这里得到的是一个数值
计算最大、最小值和索引
a1.max();//计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值 a2=max(a1[:,1]);//计算第二列的最大值,这里得到的是一个1*1的矩阵 a1[1,:].max();//计算第二行的最大值,这里得到的是一个一个数值 np.max(a1,0);//计算所有列的最大值,这里使用的是numpy中的max函数 np.max(a1,1);//计算所有行的最大值,这里得到是一个矩阵 np.argmax(a1,0);//计算所有列的最大值对应在该列中的索引 np.argmax(a1[1,:]);//计算第二行中最大值对应在改行的索引
5.矩阵的分隔和合并
矩阵的分隔,同列表和数组的分隔一致。
a=mat(ones((3,3))); b=a[1:,1:];//分割出第二行以后的行和第二列以后的列的所有元素
矩阵的合并
a=mat(ones((2,2))); b=mat(eye(2)); c=vstack((a,b));//按列合并,即增加行数 d=hstack((a,b));//按行合并,即行数不变,扩展列数