• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

详解解决Python memory error的问题(四种解决方案)

python 搞代码 4年前 (2022-01-09) 36次浏览 已收录 0个评论

昨天在用用Pycharm读取一个200+M的CSV的过程中,竟然出现了Memory Error!简直让我怀疑自己买了个假电脑,毕竟是8G内存i7处理器,一度怀疑自己装了假的内存条。。。。下面说一下几个解题步骤。。。。一般就是用下面这些方法了,按顺序试试。

一、逐行读取

如果你用pd.read_csv来读文件,会一次性把数据都读到内存里来,导致内存爆掉,那么一个想法就是一行一行地读它,代码如下:

data = []
with open(path, 'r',encoding='gbk',errors='ignore') as f:
  for line in f:
    data.append(line.split(','))
    
data = pd.DataFrame(data[0:100])

这就是先用with open把csv的每一行读成一个字符串,然后因为csv都是靠逗号分隔符来分割每列的数据的,那么通过逗号分割就可以把这些列都分离开了,然后把每一行的list都放到一个list中,形成二维数组,再转换成DataFrame。

这个方法有一些问题,首先读进来之后索引和列名都需要重新调整,其次很多数字的类型都发生了变化,变成了字符串,最后是最后一列会把换行符包含进去,需要用replace替换掉。

不知道为什么,用了这个操作之后,还是出现了Memory error的问题。基于这些缺点以及遗留问题,考虑第二种解决方案。

二、巧用pandas中read_csv的块读取功能

pandas设计时应该是早就考虑到了这些可能存在的问题,所以在read功能中设计了块读取的功能,也就是不会一次性把所有的数据都放到内存中来,而是分块读到内存中,最后再将块合并到一起,形成一个完整的DataFrame。

f = open(path)

data = pd.read_csv(path, sep=',',engine = 'python',iterator=True)
loop = True
chunkS<span style="color:transparent">来1源gaodai#ma#com搞*代#码1网</span>ize = 1000
chunks = []
index=0
while loop:
  try:
    print(index)
    chunk = data.get_chunk(chunkSize)
    chunks.append(chunk)
    index+=1

  except StopIteration:
    loop = False
    print("Iteration is stopped.")
print('开始合并')
data = pd.concat(chunks, ignore_index= True)

以上代码规定用迭代器分块读取,并规定了每一块的大小,即chunkSize,这是指定每个块包含的行数。

这个方法能够保持数据的类型,也不需要自己费心思去调整列名和index,比较方便。但不幸的是,我的还是出现了这个问题,如果你的用了这种方法还是出现memory error,你可以继续往下看。

三、扩充虚拟内存

我在运行代码的过程中发现,出现memory error错误的时候,其实我的内存只用到了40+%,所以其实不太可能会出现这个错误啊,所以我查了下,发现有说是内存被限制了,考虑关掉一些可能限制内存的软件啦,扩大虚拟内存啦,这些的。

扩大虚拟内存的方法(我的系统是win8,不过应该都大同小异):
1、打开 控制面板;
2、找到 系统 这一项;
3、找到 高级系统设置 这一项;
4、点击 性能 模块的 设置 按钮;
5、选择 高级面板,在 虚拟内存 模块点击更改;
6、记得 不要 选中“自动管理所有驱动器的分页文件大小”,然后选择一个驱动器,也就是一个盘,选中自定义大小,手动输入初始大小和最大值,当然,最好不要太大,更改之后能在查看盘的使用情况,不要丢掉太多空间。
7、都设置好之后,记得点击 “设置”, 然后再确定,否则无效,最后 重启电脑 就可以了。


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:详解解决Python memory error的问题(四种解决方案)

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址