• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python torch.flatten()函数案例详解

python 搞代码 4年前 (2022-01-09) 42次浏览 已收录 0个评论

先看函数参数:

torch.flatten(input, start_dim=0, end_dim=-1)

input: 一个 tensor,即要被“推平”的 tensor。

start_dim: “推平”的起始维度。

end_dim: “推平”的结束维度。

首先如果按照 start_dim 和 end_dim 的默认值,那么这个函数会把 input 推平成一个 shape 为 [n][n] 的tensor,其中 nn 即 input 中元素个数。

如果我们要自己设定起始维度和结束维度呢?

我们要先来看一下 tensor 中的 shape 是怎么样的:

t = torch.tensor([[[1, 2, 2, 1],
                   [3, 4, 4, 3],
                   [1, 2, 3, 4]],
                  [[5, 6, 6, 5],
                   [7, 8, 8, 7],
                   [5, 6, 7, 8]]])
print(t, t.shape)
 
运行结果:
 
tensor([[[1, 2, 2, 1],
         [3, 4, 4, 3],
         [1, 2, 3, 4]],
 
        [[5, 6, 6, 5],
         [7, 8, 8, 7],
         [5, 6, 7, 8]]])
torch.Size([2, 3, 4])

我们可以看到,最外层的方括号内含两个元素,因此 shape 的第一个值是 2;类似地,第二层方括号里面含三个元素,shape 的第二个值就是 3;最内层方括号里含四个元素,shape 的第二个值就是 4。

示例代码:

x = torch.flatten(t, start_dim=1)
print(x, x.shape)
 
y = torch.flatten(t, start_dim=0, end_dim=1)
print(y, y.shape)
 
 
运行结果:
 
tensor([[1, 2, 2, 1, 3, 4, 4, 3, 1, 2, 3, 4],
        [5, 6, 6, 5, 7, 8, 8, 7, 5, 6, 7, 8]]) 
torch.Size([2, 12])
 
tensor([[1, 2, 2, 1],
        [3, 4, 4, 3],
        [1, 2, 3, 4],
        [5, 6, 6, 5],
        [7, 8, 8, 7],
        [5, 6, 7, 8]]) 
torch.Size([6, 4])

可以看到,当 start_dim = 11 而 end_dim 本文来源gao@!dai!ma.com搞$$代^@码!网= −1−1 时,它把第 11 个维度到最后一个维度全部推平合并了。而当 start_dim = 00 而 end_dim = 11 时,它把第 00 个维度到第 11 个维度全部推平合并了。pytorch中的 torch.nn.Flatten 类和 torch.Tensor.flatten 方法其实都是基于上面的 torch.flatten 函数实现的。

到此这篇关于Python torch.flatten()函数案例详解的文章就介绍到这了,更多相关Python torch.flatten()函数内容请搜索搞代码以前的文章或继续浏览下面的相关文章希望大家以后多多支持搞代码


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python torch.flatten()函数案例详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址