• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Pytorch 使用CNN图像分类的实现

python 搞代码 4年前 (2022-01-09) 28次浏览 已收录 0个评论

需求

在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类

如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类

想法

  • 通过numpy、PIL构造4*4的图像数据集
  • 构造自己的数据集类
  • 读取数据集对数据集选取减少偏斜
  • cnn设计因为特征少,直接1*1卷积层
  • 或者在4*4外围添加padding成6*6,设计2*2的卷积核得出3*3再接上全连接层

代码

import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
from PIL import Image

构造数据集

import csv
import collections
import os
import shutil

def buildDataset(root,dataType,dataSize):
  """构造数据集
  构造的图片存到root/{dataType}Data
  图片地址和标签的csv文件存到 root/{dataType}DataInfo.csv
  Args:
    root:str
      项目目录
    dataType:str
      'train'或者‘test'
    dataNum:int
      数据大小
  Returns:
  """
  dataInfo = []
  dataPath = f'{root}/{dataType}Data'
  if not os.path.exists(dataPath):
    os.makedirs(dataPath)
  else:
    shutil.rmtree(dataPath)
    os.mkdir(dataPath)
    
  for i in range(dataSize):
    # 创建0,1 数组
    imageArray=np.random.randint(0,2,(4,4))
    # 计算0,1数量得到标签
    allBlackNum = collections.Counter(imageArray.flatten())[0]
    innerBlackNum = collections.Counter(imageArray[1:3,1:3].flatten())[0]
    label = 0 if (allBlackNum-innerBlackNum)>innerBlackNum else 1
    # 将图片保存
    path = f'{dataPath}/{i}.jpg'
    dataInfo.append([path,label])
    im = Image.fromarray(np.uint8(imageArray*255))
    im = im.convert('1') 
    im.save(path)
  # 将图片地址和标签存入csv文件
  filePath = f'{root}/{dataType}DataInfo.csv'
  with open(filePath, 'w') as f:
    writer = csv.writer(f)
    writer.writerows(dataInfo)
root=r'/Users/null/Documents/PythonProject/Classifier'

构造训练数据集

buildDataset(root,'train',20000)

构造测试数据集

buildDataset(root,'test',10000)

读取数据集

class MyDataset(torch.utils.data.Dataset):

  def __init__(self, root, datacsv, transform=None):
    super(MyDataset, self).__init__()
    with open(f'{root}/{datacsv}', 'r') as f:
      imgs = []
      # 读取csv信息到imgs列表
      for path,label in map(lambda line:line.rstrip().split(','),f):
        imgs.append((path, int(<a style="color:transparent">本文来源gao($daima.com搞@代@#码(网5</a>label)))
    self.imgs = imgs
    self.transform = transform if transform is not None else lambda x:x
    
  def __getitem__(self, index):
    path, label = self.imgs[index]
    img = self.transform(Image.open(path).convert('1'))
    return img, label

  def __len__(self):
    return len(self.imgs)
trainData=MyDataset(root = root,datacsv='trainDataInfo.csv', transform=transforms.ToTensor())
testData=MyDataset(root = root,datacsv='testDataInfo.csv', transform=transforms.ToTensor())

处理数据集使得数据集不偏斜

import itertools

def chooseData(dataset,scale):
  # 将类别为1的排序到前面
  dataset.imgs.sort(key=lambda x:x[1],reverse=True)
  # 获取类别1的数目 ,取scale倍的数组,得数据不那么偏斜
  trueNum =collections.Counter(itertools.chain.from_iterable(dataset.imgs))[1]
  end = min(trueNum*scale,len(dataset))
  dataset.imgs=dataset.imgs[:end]
scale = 4
chooseData(trainData,scale)
chooseData(testData,scale)
len(trainData),len(testData)
(2250, 1122)
import torch.utils.data as Data

# 超参数
batchSize = 50
lr = 0.1
numEpochs = 20

trainIter = Data.DataLoader(dataset=trainData, batch_size=batchSize, shuffle=True)
testIter = Data.DataLoader(dataset=testData, batch_size=batchSize)

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Pytorch 使用CNN图像分类的实现

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址