• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

使用darknet框架的imagenet数据分类预训练操作

python 搞代码 4年前 (2022-01-09) 28次浏览 已收录 0个评论

最近一段时间一直在研究yolo物体检测,基于网络上很少有yolo的分类预训练和yolo9000的联合数据的训练方法,经过本人的真实实验,对这两个部分做一个整理(本篇介绍yolo的分类预训练)

1、数据准备

1000类的Imagenet图片数据

因为Imagenet不同的类别数据都是单独放在一个文件夹中,并且有特定的命名,如‘n00020287’,所以在做分类时我们不需要去制作特定的标签,只要训练的图片的path中包含自身的类别标签,而不含有其他类的标签即可。

制作用于训练的数据列表*classf_list.txt

2、分类标签制作

制作所有类别的标签列表new_label.txt和标签对应的类别名称的列表new_name.txt

new_label.txt

new_name.txt(训练时不需要,但是测试时可以显示出具体的类别)

3、修改cfg/.data配置文件(*classf.data)

classes=1000
train =/home/research/disk2/wangshun/yolo1700/darknet/coco/filelist/classf_list.txt
labels=data/new_label.txt
names=data/new_name.txt
backup=backup
top=5

修改网络配置文件(classf.cfg)

[net]
#Training
batch=64
subdivisions=1
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
max_crop = 512
learning_rate=0.001
burn_in=1000
max_batches = 1000000000
policy=steps
steps=350000,500000,750000,1200000
scales=.1,.1,.1,.1
[convolutional]
batch_normalize=1
filters=16
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=32
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=leaky
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activatio<em>本文来源gao.dai.ma.com搞@代*码(网$</em>n=leaky
#######
[convolutional]
batch_normalize=1
size=1
stride=1
pad=1
filters=128
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=256
activation=leaky
[convolutional]
filters=1000
size=1
stride=1
pad=1
activation=leaky
[avgpool]
[softmax]
groups = 1
[cost]
type=sse

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:使用darknet框架的imagenet数据分类预训练操作

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址