排序分为两类,比较类排序和非比较类排序,比较类排序通过比较来决定元素间的相对次序,其时间复杂度不能突破O(nlogn);非比较类排序可以突破基于比较排序的时间下界,缺点就是一般只能用于整型相关的数据类型,需要辅助的额外空间。
要求能够手写时间复杂度位O(nlogn)的排序算法:快速排序、归并排序、堆排序
1.冒泡排序
思想:相邻的两个数字进行比较,大的向下沉,最后一个元素是最大的。列表右边先有序。
时间复杂度$O(n^2)$,原地排序,稳定的
def bubble_sort(li:list): for i in range(len(li)-1): for j in range(i + 1, len(li)): if li[i] > li[j]: li[i], li[j] = li[j], li[i]
2.选择排序
思想:首先找到最小元素,放到排序序列的起始位置,然后再从剩余元素中继续寻找最小元素,放到已排序序列的末尾,以此类推,直到所有元素均排序完毕。列表左边先有序。
时间复杂度$O(n^2)$,原地排序,不稳定
def select_sort(nums: list): <strong style="color:transparent">本文来源gao@daima#com搞(%代@#码@网&</strong> for i in range(len(nums) - 1): min_index = i for j in range(i + 1, len(nums)): if nums[j] < nums[i]: min_index = j nums[i], nums[min_index] = nums[min_index], nums[i]
3.插入排序
思想:构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。列表左边先有序。
时间复杂度$O(n^2)$,原地排序,稳定
def insert_sort(nums: list): for i in range(len(nums)): current = nums[i] pre_index = i - 1 while pre_index >= 0 and nums[pre_index] > current: nums[pre_index + 1] = nums[pre_index] pre_index -= 1 nums[pre_index + 1] = current
4.希尔排序
思想:插入排序的改进版,又称缩小增量排序,将待排序的列表按下标的一定增量分组,每组分别进行直接插入排序,增量逐渐减小,直到为1,排序完成
时间复杂度$O(n^{1.5})$,原地排序,不稳定
def shell_sort(nums: list): gap = len(nums) >> 1 while gap > 0: for i in range(gap, len(nums)): current = nums[i] pre_index = i - gap while pre_index >= 0 and nums[pre_index] > current: nums[pre_index + gap] = nums[pre_index] pre_index -= gap nums[pre_index + gap] = current gap >>= 1
5.快速排序
思想:递归,列表中取出第一个元素,作为标准,把比第一个元素小的都放在左侧,把比第一个元素大的都放在右侧,递归完成时就是排序结束的时候
时间复杂度$O(nlogn)$,空间复杂度$O(logn)$,不稳定
def quick_sort(li:list): if li == []: return [] first = li[0] # 推导式实现 left = quick_sort([l for l in li[1:] if l < first]) right = quick_sort([r for r in li[1:] if r >= first]) return left + [first] + right
6.归并排序
思想:分治算法,拆分成子序列,使用归并排序,将排序好的子序列合并成一个最终的排序序列。关键在于怎么合并:设定两个指针,最初位置分别为两个已经排序序列的起始位置,比较两个指针所指向的元素,选择相对小的元素放到合并空间,并将该指针移到下一位置,直到某一指针超出序列尾,将另一序列所剩下的所有元素直接复制到合并序列尾。