Python教程栏目介绍如何嵌套JSON
推荐(免费):Python教程
调用API
和文档数据库会返回嵌套的JSON
对象,当我们使用Python
尝试将嵌套结构中的键转换为列时,数据加载到pandas
中往往会得到如下结果:
df = pd.DataFrame.from_records(results [“ issues”],columns = [“ key”,“ fields”])
说明:这里results是一个大的字典,issues是results其中的一个键,issues的值为一个嵌套JSON对象字典的列表,后面会看到JSON嵌套结构。
问题在于API返回了嵌套的JSON
结构,而我们关心的键在对象中确处于不同级别。
嵌套的JSON
结构张成这样的。
而我们想要的是下面这样的。
下面以一个API返回的数据为例,API通常包含有关字段的元数据。假设下面这些是我们想要的字段。
- key:JSON密钥,在第一级的位置。
- summary:第二级的“字段”对象。
- status name:第三级位置。
- statusCategory name:位于第4个嵌套级别。
如上,我们选择要提取的字段在issues列表内的JSON
结构中分别处于4个不同的嵌套级别,一环扣一环。
{ "expand": "schema,names", "issues": [ { "fields": { "issuetype": { "avatarId": 10300, "description": "", "id": "10005", "name": "New Feature", "subtask": False }, "status": { "description": "A resolution has been taken, and it is awaiting verification by reporter. From here issues are either reopened, or are closed.", "id": "5", "name": "Resolved", "statusCategory": { "colorName": "green", "id": 3, "key": "done", "name": "Done", } }, "summary": "Recovered data collection Defraglar $MFT problem" }, "id": "11861", "key": "CAE-160", }, { "fields": { ... more issues], "maxResults": 5, "startAt": 0, "total": 160 }
一个不太好的解决方案
一种选择是直接撸码,写一个查找特定字段的函数,但问题是必须对每个嵌套字段调用此函数,然后再调用.apply
到DataFrame
中的新列。
为获取我们想要的几个字段,首先我们提取fields键内的对象至列:
df = ( df["fields"] .apply(pd.Series) .merge(df, left_index=True, right_index = True) )
从上表看出,只有summary是可用的,issuetype、status等仍然埋在嵌套对象中。
下面是提取issuetype中的name的一种方法。
# 提取issue type的name到一个新列叫"issue_type" df_issue_type = ( df["issuetype"] .apply(pd.Series) .rename(columns={"name": &qu<strong style="color:transparent">来源gaodai#ma#com搞@代~码$网</strong>ot;issue_type_name"})["issue_type_name"] ) df = df.assign(issue_type_name = df_issue_type)
像上面这样,如果嵌套层级特别多,就需要自己手撸一个递归来实现了,因为每层嵌套都需要调用一个像上面解析并添加到新列的方法。