本文主要介绍了Pyecharts地理数据可视化,分享给大家,具体如下:
一、Pyecharts简介和安装
1. 简介
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
- 简洁的 API 设计,使用如丝滑般流畅,支持链式调用
- 囊括了 30+ 种常见图表,应有尽有
- 支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
- 可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
- 高度灵活的配置项,可轻松搭配出精美的图表
- 详细的文档和示例,帮助开发者更快的上手项目
- 多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持
pyecharts版本v0.5.x 和 v1 间不兼容,v1 是一个全新的版本,语法也有很大不同。
2. 安装
安装pyecharts
pip install pyecharts -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
import pyecharts print(pyecharts.__version__) # 查看当前pyecharts版本
安装相关的地图扩展包
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-countries-pypkg # 全球国家地图 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-provinces-pypkg # 中国省级地图 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-cities-pypkg # 中国市级地图 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple echarts-china-counties-pypkg # 中国县区级地图
二、地图可视化
1. 世界地图
利用 Starbucks.csv 中的数据,首先计算每个国家(Country)对应的门店数量,然后使用世界地图可视化展示星巴克门面店在全球的数量分布。
# -*- coding: UTF-8 -*- """ @File :demo1.py @Author :叶庭云 @CSDN :https://yetingyun.blog.gaodaima.com/ """ import pandas as pd from pyecharts.charts import Map from pyecharts import options as opts from pyecharts.globals import ThemeType, CurrentConfig CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/' # pandas读取csv文件里的数据 df = pd.read_csv("Starbucks.csv")['Country'] # 统计各个地区星巴克门店数量 data = df.value_counts() datas = [(i, int(j)) for i, j in zip(data.index, data.values)] # 实例化一个Map对象 map_ = Map(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION)) # 世界地图 map_.add("门店数量", data_pair=datas, maptype="world") map_.set_series_opts(label_opts=opts.LabelOpts(is_show=False)) # 不显示label map_.set_global_opts( title_opts=opts.TitleOpts(title="星巴克门店数量在全球分布", pos_left='40%', pos_top='10'), # 调整title位置 legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts(max_=13608, min_=1, is_piecewise=True, pieces=[{"max": 9, "min": 1, "label": "1-9", "color": "#00FFFF"}, # 分段 添加图例注释和颜色 {"max": 99, "min": 10, "label": "10-99", "color": "#A52A2A"}, {"max": 499, "min": 100, "label": "100-499", "color": "#0000FF "}, {"max": 999, "min": 500, "label": "500-999", "color": "#FF00FF"}, {"max": 2000, "min": 1000, "label": "1000-2000", "color": "#228B22"}, {"max": 3000, "min": 2000, "labe<a style="color:transparent">本文来源gao($daima.com搞@代@#码$网</a>l": "2000-3000", "color": "#FF0000"}, {"max": 20000, "min": 10000, "label": ">=10000", "color": "#FFD700"} ]) ) # 渲染在网页上 map_.render('星巴克门店在全球的分布.html')