• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

详解pandas apply 并行处理的几种方法

python 搞代码 4年前 (2022-01-09) 33次浏览 已收录 0个评论

1. pandarallel (pip install )

对于一个带有Pandas DataFrame df的简单用例和一个应用func的函数,只需用parallel_apply替换经典的apply。

from pandarallel import pandarallel
 
# Initialization
pandarallel.initialize()
 
# Standard pandas apply
df.apply(func)
 
# Parallel apply
df.parallel_apply(func)

注意,如果不想并行化计算,仍然可以使用经典的apply方法。

另外可以通过在initialize函数中传递progress_bar=True来显示每个工作CPU的一个进度条。

2. joblib (pip install )

 https://pypi.python.org/pypi/joblib

# Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly
 
from math import sqrt
from joblib import Parallel, delayed
 
def test():
  start = time.time()
  result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
  end = time.time()
  print(end-start)
  result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
  end2 = time.time()
  print(end2-end)

——-输出结果———-

0.4434356689453125
0.6346755027770996

3. multiprocessing

import multiprocessing as mp
 
with mp.Pool(mp.cpu_count()) as pool:
  df['newcol'] = pool.map(f, df['col'])
multiprocessing.cpu_count()

返回系统的CPU数量。

该数量不同于当前进程可以使用的CPU数量。可用的CPU数量可以由 len(os.sched_getaffinity(0)) 方法获得。

可能引发 NotImplementedError 。

参见os.cpu_count()

4. 几种方法性能比较

(1)代码

import sys
import time
import pandas as pd
import multiprocessing as mp
from joblib import Parallel, delayed
from pandarallel import pandaral<em>本文来源[email protected]搞@^&代*@码2网</em>lel
from tqdm import tqdm, tqdm_notebook
 
 
def get_url_len(url):
  url_list = url.split(".")
  time.sleep(0.01) # 休眠0.01秒
  return len(url_list)
 
def test1(data):
  """
  不进行任何优化
  """
  start = time.time()
  data['len'] = data['url'].apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("res:{}, cost time:{}".format(res, cost_time))
 
def test_mp(data):
  """
  采用mp优化
  """
  start = time.time()
  with mp.Pool(mp.cpu_count()) as pool:
    data['len'] = pool.map(get_url_len, data['url'])
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_mp \t res:{}, cost time:{}".format(res, cost_time))
 
def test_pandarallel(data):
  """
  采用pandarallel优化
  """
  start = time.time()
  pandarallel.initialize()
  data['len'] = data['url'].parallel_apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))
 
 
def test_delayed(data):
  """
  采用delayed优化
  """
  def key_func(subset):
    subset["len"] = subset["url"].apply(get_url_len)
    return subset
 
  start = time.time()
  data_grouped = data.groupby(data.index)
  # data_grouped 是一个可迭代的对象,那么就可以使用 tqdm 来可视化进度条
  results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
  data = pd.concat(results)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))
 
 
if __name__ == '__main__':
  
  columns = ['title', 'url', 'pub_old', 'pub_new']
  temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
  data = temp
  """
  for i in range(99):
    data = data.append(temp)
  """
  print(len(data))
  """
  test1(data)
  test_mp(data)
  test_pandarallel(data)
  """
  test_delayed(data)

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:详解pandas apply 并行处理的几种方法

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址