• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python机器学习之线性回归详解

python 搞代码 4年前 (2022-01-09) 29次浏览 已收录 0个评论
文章目录[隐藏]

一、python机器学习?线性回归

线性回归是最简单的机器学习模型,其形式简单,易于实现,同时也是很多机器学习模型的基础。

对于一个给定的训练集数据,线性回归的目的就是找到一个与这些数据最吻合的线性函数。

二、OLS线性回归

2.1 Ordinary Least Squares 最小二乘法

3.1 GDLinearRegression代码实现

from linear_regression import GDLinearRegression
gd_lr = GDLinearRegression(n_iter=3000,eta=0.001,tol=0.00001)
#梯度下降最大迭代次数n_iter
#学习率eta
#损失降低阈值tol

四、多项式回归分析

多项式回归是本文来源[email protected]搞@^&代*@码2网研究一个因变量与一个或者多个自变量间多项式的回归分析方法。

多项式回归模型方程式如下:

hθ(x)=θ0+θ1x+θ2×2+…+θmxm

简单来说就是在阶数=k的情况下将每一个特征转换为一个k阶的多项式,这些多项式共同构成了一个矩阵,将这个矩阵看作一个特征,由此多项式回归模型就转变成了简单的线性回归。以下为特征x的多项式转变:


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python机器学习之线性回归详解
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址