一、python机器学习?线性回归
线性回归是最简单的机器学习模型,其形式简单,易于实现,同时也是很多机器学习模型的基础。
对于一个给定的训练集数据,线性回归的目的就是找到一个与这些数据最吻合的线性函数。
二、OLS线性回归
2.1 Ordinary Least Squares 最小二乘法
3.1 GDLinearRegression代码实现
from linear_regression import GDLinearRegression gd_lr = GDLinearRegression(n_iter=3000,eta=0.001,tol=0.00001) #梯度下降最大迭代次数n_iter #学习率eta #损失降低阈值tol
四、多项式回归分析
多项式回归是本文来源[email protected]搞@^&代*@码2网研究一个因变量与一个或者多个自变量间多项式的回归分析方法。
多项式回归模型方程式如下:
hθ(x)=θ0+θ1x+θ2×2+…+θmxm
简单来说就是在阶数=k的情况下将每一个特征转换为一个k阶的多项式,这些多项式共同构成了一个矩阵,将这个矩阵看作一个特征,由此多项式回归模型就转变成了简单的线性回归。以下为特征x的多项式转变: