理解 pandas 的函数,要对函数式编程有一定的概念和理解。函数式编程,包括函数式编程思维,当然是一个很复杂的话题,但对今天介绍的 apply()
函数,只需要理解:函数作为一个对象,能作为参数传递给其它函数,也能作为函数的返回值。
函数作为对象能带来代码风格的巨大改变。举一个例子,有一个类型为 list 的变量,包含 从 1 到 10 的数据,需要从其中找出能被 3 整除的所有数字。用传统的方法:
def can_divide_by_three(number): if number % 3 == 0: return True else: return False selected_numbers = [] for number in range(1, 11): if can_divide_by_three(number): selected_numbers.append(number)
循环是不可少的,因为 can_divide_by_three()
函数只用一次,考虑用 lambda 表达式简化:
divide_by_three = lambda x : True if x % 3 == 0 else False selected_numbers = [] for number in range(1, 11): if divide_by_three(item): selected_numbers.append(item)
以上是传统编程思维方式,而函数式编程思维则完全不同。我们可以这样想:从 list 中取出特定规则的数字,能不能只关注和设置规则,循环这种事情交给编程语言去处理呢?当然可以。当编程人员只关心规则(规则可能是一个条件,或者由某一个 function 来定义),代码将大大简化,可读性也更强。
Python 语言提供 filter()
函数,语法如下:
filter(function, sequence)
filter()
函数的功能:对 sequence 中的 item 依次执行 function(item),将结果为 True 的 item 组成一个 List/String/Tuple(取决于 sequence 的类型)并返回。有了这个函数,上面的代码可以简化为:
divide_by_three = lambda x : True if x % 3 == 0 else False selected_numbers = filter(divide_by_three, range(1, 11))
将 lambda 表达式放在语句中,代码简化到只需要一句话就够了:
selected_numbers = filter(lambda x: x % 3 == 0, range(1, 11))
Series.apply()
回到主题, pandas 的 apply()
函数可以作用于 Series
或者整个 DataFrame
,功能也是自动遍历整个 Series
或者 DataFrame
, 对每一个元素运行指定的函数。
举一个例子,现在有这样一组数据,学生的考试成绩:
Name Nationality Score 张 汉 400 李 回 450 王 汉 460
如果民族不是汉族,则总分在考试分数上再加 5 分,现在需要用 pandas 来做这种计算,我们在 Dataframe 中增加一列。当然如果只是为了得到结果, numpy.where()
函数更简单,这里主要为了演示 Series.apply()
函数的用法。
import pandas as pd df = pd.read_csv("studuent-score.csv") df['ExtraScore'] = df<strong style="color:transparent">本文来源gaodai#ma#com搞@@代~&码网^</strong>['Nationality'].apply(lambda x : 5 if x != '汉' else 0) df['TotalScore'] = df['Score'] + df['ExtraScore']