• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python通过四大 AutoEDA 工具包快速产出完美数据报告

python 搞代码 4年前 (2022-01-09) 56次浏览 已收录 0个评论

D-Tale是Flask后端和React前端组合的产物,也是一个开源的Python自动可视化库,可以为我们提供查看和分析Pandas DataFrame的方法,帮助我们获得非常数据的详细EDA。

目前D-Tale支持DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex 等 Pandas 对象。

Github 链接

https://github.com/man-group本文来源gao@daima#com搞(%代@#码网@/dtale

# pip install dtale
import dtale
import pandas as pd
df = pd.read_csv('./data/titanic.csv')
d = dtale.show(df)
d.open_browser()

02 Pandas-Profiling

Pandas-Profiling可以对Pandas DataFrame生成report报告。其中:

  • pandas_profiling的df.profile_report()扩展了pandas DataFrame以方便进行快速数据分析。

Pandas-Profiling对于每一列特征,特征的统计信息(如果与列类型相关)会显示在交互式 HTML的report中:

  • Type:检测数据列类型;
  • Essentials:类型、unique值、缺失值
  • 分位数统计,如最小值、Q1、中位数、Q3、最大值、范围、四分位距
  • 描述性统计数据,如均值、众数、标准差、总和、中值绝对偏差、变异系数、峰态、偏度
  • 出现最多的值
  • 直方图
  • 高度相关变量、Spearman、Pearson 和 Kendall 矩阵的相关性突出显示
  • 缺失值矩阵、计数、热图和缺失值树状图

Github 链接

https://github.com/pandas-profiling/pandas-profiling/

from pandas_profiling import ProfileReport
profile = ProfileReport(df, title="Pandas Profiling Report")
profile

2021-10-30 22:50:43,584 – INFO – Pandas backend loaded 1.2.5
2021-10-30 22:50:43,597 – INFO – Numpy backend loaded 1.19.2
2021-10-30 22:50:43,599 – INFO – Pyspark backend NOT loaded
2021-10-30 22:50:43,600 – INFO – Python backend loaded

一个特征的案例

03 Sweetviz


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python通过四大 AutoEDA 工具包快速产出完美数据报告

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址