D-Tale是Flask后端和React前端组合的产物,也是一个开源的Python自动可视化库,可以为我们提供查看和分析Pandas DataFrame的方法,帮助我们获得非常数据的详细EDA。
目前D-Tale支持DataFrame、Series、MultiIndex、DatetimeIndex 和 RangeIndex 等 Pandas
对象。
Github 链接
https://github.com/man-group本文来源gao@daima#com搞(%代@#码网@/dtale
# pip install dtale import dtale import pandas as pd df = pd.read_csv('./data/titanic.csv') d = dtale.show(df) d.open_browser()
02 Pandas-Profiling
Pandas-Profiling可以对Pandas DataFrame生成report报告。其中:
- pandas_profiling的df.profile_report()扩展了pandas DataFrame以方便进行快速数据分析。
Pandas-Profiling对于每一列特征,特征的统计信息(如果与列类型相关)会显示在交互式 HTML的report中:
- Type:检测数据列类型;
- Essentials:类型、unique值、缺失值
- 分位数统计,如最小值、Q1、中位数、Q3、最大值、范围、四分位距
- 描述性统计数据,如均值、众数、标准差、总和、中值绝对偏差、变异系数、峰态、偏度
- 出现最多的值
- 直方图
- 高度相关变量、Spearman、Pearson 和 Kendall 矩阵的相关性突出显示
- 缺失值矩阵、计数、热图和缺失值树状图
- …
Github 链接
https://github.com/pandas-profiling/pandas-profiling/
from pandas_profiling import ProfileReport profile = ProfileReport(df, title="Pandas Profiling Report") profile
2021-10-30 22:50:43,584 – INFO – Pandas backend loaded 1.2.5
2021-10-30 22:50:43,597 – INFO – Numpy backend loaded 1.19.2
2021-10-30 22:50:43,599 – INFO – Pyspark backend NOT loaded
2021-10-30 22:50:43,600 – INFO – Python backend loaded
一个特征的案例
03 Sweetviz