• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

人工智能学习pyTorch的ResNet残差模块示例详解

python 搞代码 4年前 (2022-01-09) 28次浏览 已收录 0个评论
文章目录[隐藏]

1.定义ResNet残差模块

一个block中,有两个卷积层,之后的输出还要和输入进行相加。因此一个block的前向流程如下:

输入x→卷积层→数据标准化→ReLU→卷积层→数据标准化→数据和x相加→ReLU→输出out

中间加上了数据的标准化(通过nn.BatchNorm2d实现),可以使得效果更好一些。

①各层的定义

②前向传播

在前向传播中输入x,过程中根据前向流程,调用上面定义的层即可。

如此,便定义好了一个残差的模块。

2.ResNet18的实现

此处的ResNet18并没有涉及到太多细节,只是一个大致的内容。

在初始化的时候,定义好所需要使用的模块,根据上面定义好的残差模块,调用即可。在这里使用了4次残差模块,将通道数从输入的3(也就是RGB),变成了512通道。也就是最终提取的高级特征。提取完特征,直接输入给Linear方法,得到图片在10种图片类型上的结果,用于预测以及损失值的求解。

①各层的定义

②前向传播

同样的,调用上面定义好的层,根据流程传播即可。

3.测试ResNet18

如下图,输入的是2张图,RGB,长宽均是32的数据。

通过ResNet18之后,输出的是2张图,每张图对应10种类型的不同取值logits。

过程中的通道数目的转换如下面的结果所示:3→64→128→256→512→5

本文来源gaodai.ma#com搞#代!码网_

12

过程中的尺寸转换,根据设置的卷积核,以及步长,会有不同的结果。但总体都是为了得到更高级的特征,最终输入全连层,得到Logits。

以上就是人工智能学习pyTorch的ResNet残差模块示例详解的详细内容,更多关于PyTorch人工智能学习ResNet残差模块的资料请关注搞代码其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:人工智能学习pyTorch的ResNet残差模块示例详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址