• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

人工智能学习Pytorch张量数据类型示例详解

python 搞代码 4年前 (2022-01-09) 29次浏览 已收录 0个评论
文章目录[隐藏]

1.python 和 pytorch的数据类型区别

在PyTorch中无法展示字符串,因此表达字符串,需要将其转换成编码的类型,比如one_hot,word2vec等。

2.张量

在python中,会有标量,向量,矩阵等的区分。但在PyTorch中,这些统称为张量tensor,只是维度不同而已。

标量就是0维张量,只有一个数字,没有维度。

本文来源gao($daima.com搞@代@#码8网^向量就是1维张量,是有顺序的数字,但没有“行”或“列”的区分。

矩阵就是2维张量,有形状,行和列。

以此类推,PyTorch中也常用3维张量和4维张量。

具体的张量生成和相关特性获取方式如下:

①一维张量

在PyTorch中,没有中括号,只有一个数字,就是1维张量,也就是python中的标量。

可以通过不同的方法查看数据的维度:

对于0维张量,查看形状的时候就是0。

②二维张量

通过Pytorch可以直接指定一个具体的张量数据,也可以通过指定张量的形状,来随机生成指定形状的数据。

如果通过numpy生成了数据,可以通过torch.from_numpy来转换成张量。

③3维张量

通常,在RNN中会使用3维张量。

④4维张量

通常,在CNN中会使用3维张量。比如下图生成的四维张量,可以理解为是2张图,3层颜色,长宽均为28

以上,通过不同的方法可以生成想要的维度的张量,并查看相关属性。

以上就是人工智能学习Pytorch张量数据类型示例详解的详细内容,更多关于Pytorch张量数据类型的资料请关注搞代码其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:人工智能学习Pytorch张量数据类型示例详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址