• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python人工智能深度学习CNN

python 搞代码 4年前 (2022-01-09) 16次浏览 已收录 0个评论
文章目录[隐藏]

1.CNN概述

CNN的整体思想,就是对图片进行下采样,让一个函数只学一个图的一部分,这样便得到少但是更有效的特征,最后通过全连接神经网络对结果进行输出。

整体架构如下:

输入图片

→卷积:得到特征图(激活图)

→ReLU:去除负值

→池化:缩小数据量同时保留最有效特征

(以上步骤可多次进行)

→输入全连接神经网络

2.卷积层

CNN-Convolution

卷积核(或者被称为kernel, filter, neuron)是要被学出来的,卷积核中的数就是权重(参数)

当卷积核与图片进行相乘相加的时候,如果卷积核此时正在计算的区域数字分布与卷积核类似,所得的求和结果会很大本文来源[email protected]搞@^&代*@码2网(称为卷积核被激活了),而其他地方会很小,说明图像在这个区域,有和卷积核类似的图案。

一个卷积核只能识别一个特征。因此我们需要添加多个卷积核,卷积核越多,得到的激活图就越深,输入图像的信息就越多。

3.池化层

CNN-MaxPooling

在Max Pooling,也就是池化层之前,会需要进行一个ReLU函数转化,即把小于0的值全转为0,其他的不变。

池化层主要就是为了减少数据量,选一个尺寸之后,直接用尺寸中的最大值代替那个尺寸。这样可以减少数据从而减少运算量。

如下图所示,输入数据原本是6*6,通过卷积层之后变成4*4,通过池化层之后变成2*2。对于实际的图片来说,维度可能很高,因此卷积层,池化层可以多次进行。

4.全连层

将最后得到的高层次特征输入全连接的神经网络,即全连层。全连层就是一个全连接的神经网络,它的参数数量就是最后的池化层输出的数据数量。

同样的,前向传播后,计算损失函数后进行后向传播,得到各参数的梯度,对各参数进行更新,直到找到最佳参数。

因此,在全连接之前的所有层,不管多少层的卷积、池化,都是为了得到更好的特征的同时降低数据量。使得模型可以更好地训练。

以上就是Python人工智能深度学习CNN的详细内容,更多关于人工智能CNN深度学习的资料请关注搞代码其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python人工智能深度学习CNN

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址