• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

浅谈Pytorch中autograd的若干(踩坑)总结

python 搞代码 4年前 (2022-01-09) 17次浏览 已收录 0个评论
文章目录[隐藏]

关于Variable和Tensor

旧版本的Pytorch中,Variable是对Tensor的一个封装;在Pytorch大于v0.4的版本后,Varible和Tensor合并了,意味着Tensor可以像旧版本的Variable那样运行,当然新版本中Variable封装仍旧可以用,但是对Varieble操作返回的将是一个Tensor。

import torch as t
from torch.autograd import Variable
 
a = t.ones(3,requires_grad=True)
print(type(a))
#输出:<class 'tor<b>本文来源gao@!dai!ma.com搞$$代^@码!网</b>ch.Tensor'>
 
a=Variable(a)
print(type(a))
#输出仍旧是:<class 'torch.Tensor'>
 
print(a.volatile)
#输出:__main__:1: UserWarning: volatile was removed (Variable.volatile is always False)
a.volatile=True
print(a.volatile)
#输出:__main__:1: UserWarning: volatile was removed (Variable.volatile is always False)
#现版本pytorch中移除了volatile这个属性,即volatile总是false

叶子节点leaf

对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None。

import torch as t
a = t.ones(3,requires_grad=True)
b = t.rand(3,requires_grad=True)
a,a.is_leaf
#输出:(tensor([1., 1., 1.], requires_grad=True), True)
b
#输出:(tensor([0.4254, 0.8763, 0.5901], requires_grad=True), True)
 
c = a*b
c.is_leaf
#输出:False.说明c不是叶子节点
a.grad_fn
#输出:None.叶子节点的grad_fn为None.
c.grad_fn
#输出:<MulBackward0 object at 0x7fa45c406278> 

autograd操作

首先Tensor是默认不需要求导的,即requires_grad默认为False。

import torch as t
a = t.ones(3)
a.requires_grad
#输出:False.Tensor默认不需要求导

如果某一个节点requires_grad被设置为True,那么所有依赖它的节点requires_grad都为True。

import torch as t
 
a = t.ones(3)
b = t.ones(3,requires_grad=True)
b.requires_grad
#输出:True
c = a + b
c.requires_grad
#输出:True.虽然c没有指定需要求导,然是c依赖于b,而b需要求导,所以c.requires_grad=True

只有scalar才能进行反向backward()操作,并且backward对于叶节点的grad的是累加的。当只进行计算操作不做backward,叶节点的grad不发生变化。

更正一下,并不是只有scaler才能进行backward操作,矩阵和向量也可以,只不过backward()中要添加对应维度的参数。

import torch as t
 
a = t.ones(3,requires_grad=True)
b = t.rand(3,requires_grad=True)
a,b
#输出:(tensor([1., 1., 1.], requires_grad=True), 
#tensor([0.9373, 0.0556, 0.6426], requires_grad=True))
c = a*b
c
#输出:tensor([0.9373, 0.0556, 0.6426], grad_fn=<MulBackward0>)
c.backward(retain_graph=True)
#输出:RuntimeError: grad can be implicitly created only for scalar outputs
#只有数值scalar才能进行backward操作
d = c.sum()
d.backward(retain_graph=True)
#retain_graph=True是为了保存中间缓存,否则再次backward的时候会报错
a.grad
#输出:tensor([0.9373, 0.0556, 0.6426])
b.grad
#输出:tensor([1., 1., 1.])
#backward后a和b的grad产生了数值
e = c.sum()
e.backward(retain_graph=True)
b.grad
#输出:tensor([2., 2., 2.]).b的grad进行了两次backward后进行了累加.
f = c.sum()
b.grad
#输出:tensor([2., 2., 2.])
#只进行计算不backward,梯度不更新

Tensor.data和Tensor.detach()

如过tensor的数值需要参与计算又不想参与到计算图的更新中,计算的时候可以用tensor.data,这样既能利用tensor的数值,又不会更新梯度。

import torch as t
 
a = t.ones(3,4,requires_grad=True)
b = t.rand(3,4,requires_grad=True)
 
a.data.requires_grad
#输出:False. a.data独立于计算图之外
 
c = a.data * b.data
d = c.sum()
d.backward()
#输出:RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
#因为独立于计算图之外,requires_grad = False所以不能backward()

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:浅谈Pytorch中autograd的若干(踩坑)总结
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址