• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch 中autograd.grad()函数的用法说明

python 搞代码 4年前 (2022-01-09) 23次浏览 已收录 0个评论

我们在用神经网络求解PDE时, 经常要用到输出值对输入变量不是Weights和Biases)求导; 在训练WGAN-GP 时, 也会用到网络对输入变量的求导。

以上两种需求, 均可以用pytorch 中的autograd.grad() 函数实现。

autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)

outputs: 求导的因变量(需要求导的函数)

inputs: 求导的自变量

grad_outputs: 如果 outputs为标量,则grad_outputs=None,也就是说,可以不用写; 如果outputs 是向量,则此参数必须写,不写将会报如下错误:

那么此参数究竟代表着什么呢?

先假设 为一维向量, 即可设自变量因变量分别为 , 其对应的 Jacobi 矩阵为

grad_outputs 是一个shape 与 outputs 一致的向量, 即

在给定grad_outputs 之后,真正返回的梯度为

为方便下文叙述我们引入记号

其次假设 ,第i个列向量对应的Jacobi矩阵为

此时的grad_outputs 为(维度与outputs一致)

由第一种情况, 我们有

也就是说对输出变量的列向量求导,再经过权重累加。

若 沿用第一种情况记号

, 其中每一个 均由第一种方法得出,

即对输入变量列向量求导,之后按照原先顺序排列即可。

retain_graph: True 则保留计算图, False则释放计算图

create_graph: 若要计算高阶导数,则必须选为True

allow_unused: 允许输入变量不进入计算

下面我们看一下具体的例子:

import torch
from torch import autograd
 
x = torch.rand(3, 4)
x.requires_grad_()

观察 x 为

不妨设 y 是 x 所有元素的和, 因为 y是标量,故计算导数不需要设置grad_outputs

y<b style="color:transparent">本文来源gao@!dai!ma.com搞$$代^@码网*</b> = torch.sum(x)
grads = autograd.grad(outputs=y, inputs=x)[0]
print(grads)

搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch 中autograd.grad()函数的用法说明

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址