• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pandas对齐运算的实现示例

python 搞代码 4年前 (2022-01-09) 20次浏览 已收录 0个评论

1.算术运算和数据对齐

import numpy as np
import pandas as pd

1.1 Series

a1 = pd.Series(np.arange(4),index=['a','b','c','d'])
a2 = pd.Series(np.arange(5),index=['a','r','c','u','k'])
print(a1)
print("="*20)
print(a2)

a    0
b    1
c    2
d    3
dtype: int32
====================
a    0
r    1
c    2
u    3
k    4
dtype: int32

有相同的索引值相加后结果变为浮点数,不相同则返回NAN值。

a1 + a2  

a    0.0
b    NaN
c    4.0
d    NaN
k    NaN
r    NaN
u    NaN
dtype: float64

1.2 DataFrame

a3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=['q','w','e','r'])
a4 = pd.DataFrame(np.aran<mark style="color:transparent">本文来源gaodaimacom搞#^代%!码&网*</mark>ge(9).reshape(3,3),index=['a','u','c'],columns=['m','e','r'])
print(a3)
print("="*20)
print(a4)

   q  w   e   r
a  0  1   2   3
b  4  5   6   7
c  8  9  10  11
====================
   m  e  r
a  0  1  2
u  3  4  5
c  6  7  8

只有行和列索引都相同的才能运算,否则返回NAN值

a3 + a4  

 e   m     q   r     w
a 3.0   NaN NaN   5.0 NaN
b NaN   NaN NaN   NaN NaN
c 17.0  NaN NaN   19.0 NaN
u NaN   NaN NaN   NaN NaN

2.使用填充值的算术方法

2.1 Series

a1 = pd.Series(np.arange(4),index=['a','b','c','d'])
a2 = pd.Series(np.arange(5),index=['a','r','c','u','k'])
print(a1)
print("="*20)
print(a2)
print("="*20)
print(a1 + a2)    #有相同的索引值相加后结果变为浮点数,不相同索引值相加则返回NAN

a    0
b    1
c    2
d    3
dtype: int32
====================
a    0
r    1
c    2
u    3
k    4
dtype: int32
====================
a    0.0
b    NaN
c    4.0
d    NaN
k    NaN
r    NaN
u    NaN
dtype: float64


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pandas对齐运算的实现示例
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址