• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

OpenCV半小时掌握基本操作之傅里叶变换

python 搞代码 4年前 (2022-01-08) 19次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了OpenCV基本操作之傅里叶变换,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 OpenCV 的世界. 

高频 vs 低频

高频 vs 低频:

  • 高频: 变换剧烈的灰度分量, 例如边界
  • 低频: 变换缓慢的灰度分量, 例如一片大海

滤波:

  • 低通滤波器: 只保留低频, 会使得图像模糊
  • 高通滤波器: 只保留高频, 会使得图像细节增强

傅里叶变换

傅里叶变化 (Fourier Transform) 是一种分析信号的方法. 傅里叶变化可分析信号的成分, 也可以用这些成分合成信号.

效果:

傅里叶变换:

傅里叶逆变换:

在 OpenCV 中实现傅里叶变换的函数是cv2.dft()cv2.idft()(傅里叶逆变化)

代码详解

输入转换

傅里叶变换支持的输入格式是np.float32, 所以我们需要先把图像转换到要求的格式.

代码实现:

 import numpy as np import cv2 # 读取图片, 并转换成灰度图 img = cv2.imread("Mona_Lisa.jpg-600", cv2.IMREAD_GRAYSCALE) print(img.dtype)  # unit8数据类型 # 转换成np.float32 img_float32 = np.float32(img) print(img_float32.dtype)  # float32数据类型 

输出结果:

uint8
float32

傅里叶变换

格式:

 cv2.dft(src, dst=None, flags=None, nonzeroRows=None) 

参数:

  • src: 输入图像
  • dst: 输出图像, 默认为 None
  • flags: 转换标志 (5 种)
  • nonezeroRows: 要处理的 dst 行数, 默认为 None

返回值:

  • 实部和虚部 (双通道)
  • 实部: 代表所有的偶函数 (余弦函数) 的部分
  • 虚部: 代表所有的奇函数 (正弦函数) 的部分

代码实现:

 # 傅里叶变换 dft = cv2.dft(img_float32, flags=cv2.DFT_COMPLEX_OUTPUT) # 中心转换, 将低频挪到中心 dft_shift = np.fft.fftshift(dft) 

获取幅度谱

幅度谱 (Magnitude Spectrum), 即从构成波形的频率侧面看过去, 每一个频率分量都会在侧面的投影, 如图:

通过“`cv2.magnitude“我们可以极端二维矢量的幅值.

格式:

 cv2.magnitude(x, y, magnitude=None) 

参数:

  • x: 实部
  • y: 虚部

代码实现:

 # 获取幅度谱, 映射到灰度空间 [0, 255] magnitude_spectrum = 20 * np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) # 幅度谱展示 combine = np.hstack((img, magnitude_spectrum.astype(np.uint8))) cv2.imshow("combine", combine) cv2.waitKey(0) cv2.destroyAllWindows() 

输出结果:

傅里叶逆变换

格式:

 cv2.idft(src, dst=None, flags=None, nonzeroRows=None) 

参数:

  • src: 输入图像
  • dst: 输出图像, 默认为 None
  • flags: 转换标志 (5 种)
  • nonezeroRows: 要处理的 dst 行数, 默认为 None

返回值:

  • 实部和虚部 (双通道)
  • 实部: 代表所有的偶函数 (余弦函数) 的部分
  • 虚部: 代表所有的奇函数 (正弦函数)来源gaodai$ma#com搞$代*码网 的部分

代码实现:

 # 获取中心位置 rows, cols = img.shape crow, ccol = int(rows / 2), int(cols / 2) # 低通滤波 mask = np.zeros((rows, cols, 2), np.uint8) mask[crow - 30:crow + 30, ccol - 30:ccol + 30] = 1 # 傅里叶逆变换 fshidt = dft_shift * mask f_ishift = np.fft.ifftshift(fshidt) img_back = cv2.idft(f_ishift) 

以上就是OpenCV半小时掌握基本操作之傅里叶变换的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:OpenCV半小时掌握基本操作之傅里叶变换

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址