• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python入门学习Python流处理过程

python 搞代码 4年前 (2022-01-08) 24次浏览 已收录 0个评论
文章目录[隐藏]

本篇文章属于Python入门篇,本文主要教大家学习Python流处理过程,通过Faust流处理库来为大家详细讲解,有需要的朋友可以借鉴参考下

Faust是一个流处理库

将kafka流中的思想移植到Python中

它被用于Robinhood去构建高性能的分布式系统和实时数据通道,每天处理数十亿的数据。

Faust同时提供流处理和事件处理同类型的工具分享例如:Kafka Streams, Apache Spark/Storm/Samza/Flink

它不需要使用一个DSL,仅需要用到Python!这意味着你在做流处理的时候可以使用所有你喜欢的Python库:

NumPy, PyTorch, Pandas, NLTK, Django, Flask, SQLAlchemy等等。

由于需要使用新的async/await语法和变量类型注释方法,Faust需要使用Python3.6以上的版本。

这里有一个处理输入命令流的示例:

这个agent装饰器定义了一个“流处理器”,它本质上是一个Kafka topic,并且可以对接收到的每个事件做一些处理。

agent是一个async def的函数,因此它还可以异步执行其他操作

如web请求。

这个系统可以持久化状态,执行方式类似于数据库。表被命名成分布式的key/value储存,你可以使用常规的Python字典来做这件事。

在每台机器上的本地用c++编写的超快嵌入式数据库(被称为RocksDB)存储表。

表还可以存储可选的“窗口”聚合计数,以便跟踪“前一天的单击次数”或“前一个小时的单击次数”。与Kafka流一样,我们支持滚动、跳跃和滑动时间窗口,旧窗口可以过期以阻止数据填充。

为了提高可靠性

使用Kafka topic作为“预写日志”

当一个密钥被更改时,我们将其发布到更新的日志上。备用节点使用这个更新日志来保存数据的精确副本,并在任何节点发生故障时支持立即恢复。

对于用户来说,表只是一个字典,但是数据在重新启动和跨节点复制之间存在,所以在故障发生时其他节点可以自动接管。

您可以通过URL统计页面浏览数量:

发送到Kafka topic的数据是分区的,这意味着点击数将用URL的这种方式进行分片。因此,同一个URL的每个计数都会立刻被传递给同一个Faust worker实例。

Faust支持任何类型的流数据

字节、Unicode和序列化结构,同时也支持使用现代Python语法的“模型”来描述流中的keys和value是如何被序列化的。

Faust是静态类型的

使用mypy类型检查器,所以您在编写应用程序时可以充分利用静态类型的优势。

Faust源代码很小,组织良好,是学习Kafka流实现的好资源。

在引言页学习更多前端的相关知识.jpg-600

去阅读更多关于Faust,系统请求,安装指导,论坛资源等等,或者直接访问快速开始的教程。在一个编写流处理的应用中去查看关于Faust应用,然后通过使用者手册深入探讨。深层次的信息都根据不同主题在这个手册中进行说明

Faust简介

Faust非常容易使用。在学习其他的流处理方法时,你总是需要从一个复杂的hello-world工程和相应的基础要求开始学习。Faust仅仅需要Kafka,剩下的就是只需要Python,如果你知道Python的话你就可以直接使用Faust去做流处理的工作了,并且它可以整合和他相关的一切。

这儿有一个简单的应用程序你可以做:源代码是Python的

您可能会被async和await这两个关键字吓到,但是您在使用Faust时不需要知道asyncio是如何工作的:只要模仿这些例子就可以得到您想要的结果。

示例应用程序启动两个任务:一个是处理流,另一个是向流发送事件的后台线程。在实际的应用程序中,您的系统将向Kafka topic发布事件,您的处理器可以从Kafka topic获取事件信来源gaodai#ma#com搞@代~码网息,并且只需要后台线程将数据输入到我们的示例中。

高可用性

Faust是高度可用的,并且可以在网络问题和服务器崩溃中生存下来。在节点失败的情况下,它可以自动恢复,并且表将接管备用节点。

分布式的

根据您的应用程序的需要启动更多实例。

快速

一个单内核的Faust worker实例已经可以每秒处理数万个事件,我们有理由相信,一旦我们能够支持一个更优化的Kafka客户端,吞吐量就会增加。

灵活性

Faust就是Python,而流是一个无限的异步迭代器。如果您知道如何使用Python,那么您已经知道如何使用Faust,它可以与您喜欢的Python库一起使用,比如Django、Flask、SQLAlchemy、NTLK、NumPy、Scikit、TensorFlow等等。最后,如果你的时间不是很紧张,并且又想快速的提高,最重要的是不怕吃苦,建议你可以联系维:762459510 ,那个真的很不错,很多人进步都很快,需要你不怕吃苦哦!大家可以去添加上看一下~

安装

您可以通过Python包或从源文件中安装Faust

使用pip安装它:

绑定

Faust还定义了一组setuptools扩展,可以用来安装Faust,并且有一个给定特性的依赖关系。

您可以在您的需求中或在pip命令行中使用方括号来指定它们。使用逗号分隔多个包:

以下的绑定均是有效的:

以上就是Python入门学习Python流处理过程的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python入门学习Python流处理过程

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址