• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python 回溯法模板详解

python 搞代码 4年前 (2022-01-08) 36次浏览 已收录 0个评论

今天小编就为大家分享一篇python 回溯法模板详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

什么是回溯法

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

无重复元素全排列问题

给定一个所有元素都不同的list,要求返回list元素的全排列。

设n = len(list),那么这个问题可以考虑为n叉树,对这个树进行dfs,这个问题里的回溯点就是深度(也就是templist的长度)为n时,回溯的条件就是当前元素已经出现在templist中了。

回溯法与递归:

回溯法是一种思想,递归是一种形式

 class Solution(object): #rtlist用来存储所有的返回所有排列,templist用来生成每个排列 def backtrack(self,rtlist,templist,nums): if(len(templist) == len(nums)): rtlist.append(templist[:]) else: for i in nums: if(i in templist): #如果在当前排列中已经有i了,就continue,相当于分支限界,即不对当前节点子树搜寻了 continue templist.append(i) self.backtrack(rtlist,templist,nums) templist.pop() #把结尾的元素用nums中的下一个值替换掉,遍历下一颗子树 def permute(self,nums): rtlist = [] templist = [] self.backtrack(rtlist,templist,nums) return rtlist 

nums=[1,2,3]时的树结构:

关键的就是确定好分支限界以及回溯点。

这里面有一个问题就是每次递归时把新加入的元素从nums删除在递归可不可以,实际上这样的时间复杂度并不会减少太多,因为对list进行操作还需要一定的时间,而原解法中因为有分支限界所以时间复杂度也不会太差。

有重复元素全排列

这个问题和上面的区别主要在于分支限界的差别,不能在使用出现重复元素作为回溯条件了,否则所有的都不满足。

这里我们应该使用计数器记录nums中每个元素出现的次数,如果当前元素超过次数则返回,但是这里还有一个问题就是可能会出现同样的排列多次,这里的解决办法就是同一层不许出现重复元素,这里有两种解决办法,一种是直接传入distinct的数组,还有一种是使用一个集合记录当前层已使用的元素。

第一种方法:

 from collections import Counter class Solution(object): def backtrack(self, rtlist, tmplist, counter, nums, length): if len(tmplist) == length:#回溯点 rtlist.append(tmplist[:]) else: for i in nums:#横向遍历 if counter[i] == 0:#分支限界 continue counter[i] -= 1 tmplist.append(i) self.backtrack(rtlist, tmplist, counter, nums, length)#纵向遍历 counter[i] += 1 tmplist.pop() def permuteUnique(self, nums): rtlist, tmplist, counter = [], [], Counter(nums) length = len(nums) self.backtrack(rtlist, tmplist, counter, list(set(nums)), length) return rtlist

第二种

 from collections import Counter class Solution(object): def backtrack(self, rtlist, tmplist, level, counter, nums): if len(tmplist) == len(nums): rtlist.append(tmplist[:]) else: for i in nums: if i in level or counter[i] == 0: continue counter[i] -= 1 tmplist.append(i) level.add(i) self.backtrack(rtlist, tmplist, set(), counter, nums) counter[i] += 1 tmplist.pop() def permuteUnique(self, nums): if not nums: return [] rtlist, tmplist, level, counter = [], [], set(), Counter(nums) self.b<p style="color:transparent">来源gao!%daima.com搞$代*!码$网</p>acktrack(rtlist, tmplist, level, counter, nums) return rtlist

在递归时不能用“=”修改父函数的变量,因为“=”只能改变变量的指向,要修改父函数的变量要直接在内存中修改,例如放入容器中可以直接找到变量内存地址。通常使用container.method()。

例如在上面的程序中如果我们想要在回溯点把counter复原不能使用counter = Counter(nums),而是应该逐个修改counter[key]

总结

回溯法其实就是把原问题考虑成一棵树,我们遍历这棵树在不可能的地方返回,不在遍历这个节点的子树,在满足要求时返回。

所以在回溯法中,关键的就是找出合理的分支限界(重要),和返回条件。

更多请参考

多叉树的遍历方法:

def travel(root):
 遍历root
 for subtree_root in 当前层所有节点:
  travel(subtree_root)

在for中对一层的所有节点都执行了travel,又因为对所有节点的所有子树都执行了travel,所以可以完成遍历。

以上就是python 回溯法模板详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python 回溯法模板详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址