• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python 标准差计算的实现(std)

python 搞代码 4年前 (2022-01-08) 108次浏览 已收录 0个评论

这篇文章主要介绍了python 标准差计算的实现(std),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

 >>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.std(a, ddof = 1) 3.0276503540974917 >>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1)) 3.0276503540974917 >>> np.sqrt(( a.var() * a.size) / (a.size - 1)) 3.0276503540974917 

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

 >> std([1,2,3]) ans = 1 

然而在numpy中:

 >>> np.std([1,2,3]) 0.81649658092772603 

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N – ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

 >>> np.std([1,2,3], ddof=<em style="color:transparent">来源[email protected]搞@^&代*@码网</em>1) 1.0 

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

 ss = StandardScaler() ss.mean_ = np.mean(X, axis=0) ss.scale_ = np.std(X, axis=0, ddof=1) X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是python 标准差计算的实现(std)的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python 标准差计算的实现(std)

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址