• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

FP-growth算法发现频繁项集――构建FP树

python 搞代码 4年前 (2022-01-08) 18次浏览 已收录 0个评论
文章目录[隐藏]

常见的挖掘频繁项集算法有两类,一类是Apriori算法,另一类是FP-growth。Apriori通过不断的构造候选集、筛选候选集挖掘出频繁项集,需要多次扫描原始数据,当原始数据较大时,磁盘I/O次数太多,效率比较低下

FP代表频繁模式(Frequent Pattern),算法主要分为两个步骤:FP-tree构建、挖掘频繁项集。

FP树表示法

FP树通过逐个读入事务,并把事务映射到FP树中的一条路径来构造。由于不同的事务可能会有若干个相同的项,因此它们的路径可能部分重叠。路径相互重叠越多,使用FP树结构获得的压缩效果越好;如果FP树足够小,能够存放在内存中,就可以直接从这个内存中的结构提取频繁项集,而不必重复地扫描存放在硬盘上的数据。

一颗FP树如下图所示:

通常,FP树的大小比未压缩的数据小,因为数据的事务常常共享一些共同项,在最好的情况下,所有的事务都具有相同的项集,FP树只包含一条节点路径;当每个事务都具有唯一项集时,导致最坏情况发生,由于事务不包含任何共同项,FP树的大小实际上与原数据的大小一样。

FP树的根节点用φ表示,其余节点包括一个数据项和该数据项在本路径上的支持度;每条路径都是一条训练数据中满足最小支持度的数据项集;FP树还将所有相同项连接成链表,上图中用蓝色连线表示。

为了快速访问树中的相同项,还需要维护一个连接具有相同项的节点的指针列表(headTable),每个列表元素包括:数据项、该项的全局最小支持度、指向FP树中该项链表的表头的指针。

构建FP树

现在有如下数据:

  

FP-growth算法需要对原始训练集扫描两遍以构建FP树。

第一次扫描,过滤掉所有不满足最小支持度的项;对于满足最小支持度的项,按照全局最小支持度排序,在此基础上,为了处理方便,也可以按照项的关键字再次排序。

第一次扫描的后的结果

第二次扫描,构造FP树。

参与扫描的是过滤后的数据,如果某个数据项是第一次遇到,则创建该节点,并在headTable中添加一个指向该节点的指针;否则按路径找到该项对应的节点,修改节点信息。具体过程如下所示:

事务001,{z,x}

事务002,{z,x,y,t,s}

事务003,{z}

事务004,{x,s,r}

事务005,{z,x,y,t,r}

事务006,{z,x,y,

来源gaodai.ma#com搞##代!^码网

t,s}

从上面可以看出,headTable并不是随着FPTree一起创建,而是在第一次扫描时就已经创建完毕,在创建FPTree时只需要将指针指向相应节点即可。从事务004开始,需要创建节点间的连接,使不同路径上的相同项连接成链表。

代码如下:

 def loadSimpDat(): simpDat = [['r', 'z', 'h', 'j', 'p'], ['z', 'y', 'x', 'w', 'v', 'u', 't', 's'], ['z'], ['r', 'x', 'n', 'o', 's'], ['y', 'r', 'x', 'z', 'q', 't', 'p'], ['y', 'z', 'x', 'e', 'q', 's', 't', 'm']] return simpDat def createInitSet(dataSet): retDict = {} for trans in dataSet: fset = frozenset(trans) retDict.setdefault(fset, 0) retDict[fset] += 1 return retDict class treeNode: def __init__(self, nameValue, numOccur, parentNode): self.name = nameValue self.count = numOccur self.nodeLink = None self.parent = parentNode self.children = {} def inc(self, numOccur): self.count += numOccur def disp(self, ind=1): print('   ' * ind, self.name, ' ', self.count) for child in self.children.values(): child.disp(ind + 1) def createTree(dataSet, minSup=1): headerTable = {} #此一次遍历数据集, 记录每个数据项的支持度 for trans in dataSet: for item in trans: headerTable[item] = headerTable.get(item, 0) + 1 #根据最小支持度过滤 lessThanMinsup = list(filter(lambda k:headerTable[k]  0: #根据全局频繁项对每个事务中的数据进行排序,等价于 order by p[1] desc, p[0] desc orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: (p[1],p[0]), reverse=True)] updateTree(orderedItems, retTree, headerTable, count) return retTree, headerTable def updateTree(items, inTree, headerTable, count): if items[0] in inTree.children:  # check if orderedItems[0] in retTree.children inTree.children[items[0]].inc(count)  # incrament count else:  # add items[0] to inTree.children inTree.children[items[0]] = treeNode(items[0], count, inTree) if headerTable[items[0]][1] == None:  # update header table headerTable[items[0]][1] = inTree.children[items[0]] else: updateHeader(headerTable[items[0]][1], inTree.children[items[0]]) if len(items) > 1:  # call updateTree() with remaining ordered items updateTree(items[1:], inTree.children[items[0]], headerTable, count) def updateHeader(nodeToTest, targetNode):  # this version does not use recursion while (nodeToTest.nodeLink != None):  # Do not use recursion to traverse a linked list! nodeToTest = nodeToTest.nodeLink nodeToTest.nodeLink = targetNode simpDat = loadSimpDat() dictDat = createInitSet(simpDat) myFPTree,myheader = createTree(dictDat, 3) myFPTree.disp()

上面的代码在第一次扫描后并没有将每条训练数据过滤后的项排序,而是将排序放在了第二次扫描时,这可以简化代码的复杂度。

控制台信息:

项的顺序对FP树的影响

值得注意的是,对项的关键字排序将会影响FP树的结构。下面两图是相同训练集生成的FP树,图1除了按照最小支持度排序外,未对项做任何处理;图2则将项按照关键字进行了降序排序。树的结构也将影响后续发现频繁项的结果。

图1 未对项的关键字排序

图2 对项的关键字降序排序

总结  

以上就是FP-growth算法发现频繁项集――构建FP树的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:FP-growth算法发现频繁项集――构建FP树

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址