• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

用Python去除图像的黑色或白色背景实例

python 搞代码 4年前 (2022-01-08) 17次浏览 已收录 0个评论

今天小编就为大家分享一篇用Python去除图像的黑色或白色背景实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

用Python去除背景,得到有效的图像

此目的是为了放入深度学习计算中来减少计算量,同时突出特征,原图像为下图,命名为1.jpg-600,在此去除白色背景,黑色背景同理

需要对原图像进行的处理是去掉白色背景,抠出有效的参与计算的图形的大小即下图

对此有两个思路:

用掩模法得到有效部分,其次去掉空白,但太繁琐喽,并且一万多张图片,其不弄到天荒地老(截图也是哦)

对图像进行处理,即先做numpy变化,后反变换,将255-原图像,此时得到的图像就是

在此计算图像的横轴相加为0,纵轴相加为0,删去和为0的列和行得到的numpy矩阵,用255减去numpy矩阵得到的图像就是所求有效图像。(在此我没能实现三通道的图像,只能做出灰度图的图像)程序如下:

 from PIL import Image import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.misc img = Image.open('1.jpg-600') e,g=img.size img1=img.convert('L') img1=np.array(img1, dtype='float32') arr=255-img1 arr1 = arr.sum(axis=0)#每一列求和 arr2 = arr.sum(axis=1)#每一行求和 df=pd.DataFrame(arr)#把像素点转化为dataframe df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和 df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和 df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来 #根据最后一行,把等于0的列删除掉 for c in df2.columns: if df2[c].sum() == 0 : df2.drop(columns = [c],inplace = True) df2.drop(columns=[e],inplace = True)#删除最后一列 df3 = df2.head((df2.shape[0])-1)#删除最后一行 a=255-df3 #df3.values#dataframe转化为numpy plt.imshow(a) scipy.misc.toimage(df3.values).save('C:/Users/Administrator.SKY-20180518VHY/Desktop/2.jpg-600')#保存图像 

最终得到的图像为

在此处考虑过将图像变为列表,但在此处做嵌套列表太为复杂,因而放弃,最终利用DataFrame做的,本考虑将三通道分开分别作运算最终得到的R、G、B三通道图像由于大小不匹配无法整合到一起,又失败了。只能得到单通道凑合弄吧。谁有好的思路,求沟通…

完整程序:

 import os from PIL import Image import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.misc def save_pic(file_path): c = [] names = os.listdir(file_path) #路径 #将文件夹中的文件名称与后边的 .dcm分开 for name in names: c.ap<em style="color:transparent">来源[email protected]搞@^&代*@码)网</em>pend(name) for files in c : img = Image.open(file_path+'\\'+files) e,g=img.size img1=img.convert('L') img1=np.array(img1, dtype='float32') arr=255-img1 arr1 = arr.sum(axis=0)#每一列求和 arr2 = arr.sum(axis=1)#每一行求和 df=pd.DataFrame(arr)#把像素点转化为dataframe df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和 df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和 df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来 #根据最后一行,把等于0的列删除掉 for c in df2.columns: if df2[c].sum() == 0 : df2.drop(columns = [c],inplace = True) df2.drop(columns=[e],inplace = True)#删除最后一列 df3 = df2.head((df2.shape[0])-1)#删除最后一行 #df3.values#dataframe转化为numpy a=255-df3 plt.imshow(a) scipy.misc.toimage(a).save('C:/Users/Administrator.SKY-20180518VHY/Desktop'+'/'+files)#保存图像 print('all is saved') save_pic(file_path='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\1') 

去除多个文件夹下多张图像,分别为:

程序为:

 import os from PIL import Image import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.misc def save_pic(file_path): c = [] d=[] names = os.listdir(file_path) #路径 #将文件夹中的文件名称与后边的 .dcm分开 for name in names: c.append(name) for files1 in c: n=os.listdir(file_path+'\\'+files1) for name in n: d.append(file_path+'\\'+files1+'\\'+name) for files2 in d : img = Image.open(files2) e,g=img.size img1=img.convert('L') img1=np.array(img1, dtype='float32') arr=255-img1 arr1 = arr.sum(axis=0)#每一列求和 arr2 = arr.sum(axis=1)#每一行求和 df=pd.DataFrame(arr)#把像素点转化为dataframe df.insert(len(df.columns),len(df.columns),arr2)#最后一列插入每一行的和 df1=pd.concat([df,(pd.DataFrame(df.sum()).T)])#最后一行插入每一列的和 df2=df1[df1[e]>0]#根据最后一列把大于0的行筛选出来 #根据最后一行,把等于0的列删除掉 for c in df2.columns: if df2[c].sum() == 0 : df2.drop(columns = [c],inplace = True) df2.drop(columns=[e],inplace = True)#删除最后一列 df3 = df2.head((df2.shape[0])-1)#删除最后一行 df3.values#dataframe转化为numpy a=255-df3 plt.imshow(a) scipy.misc.toimage(a).save('C:/Users/Administrator.SKY-20180518VHY/Desktop'+'/'+ '%d.jpg-600'%(d.index(files2)))#保存图像 print('all is saved') save_pic(file_path='C:\\Users\\Administrator.SKY-20180518VHY\\Desktop\\2') 

以上就是用Python去除图像的黑色或白色背景实例的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:用Python去除图像的黑色或白色背景实例

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址