• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

利用Python计算圆周率π的实例代码

python 搞代码 4年前 (2022-01-08) 25次浏览 已收录 0个评论

圆周率没有精确的计算公式,所以只能用近似的方式计算它的近似值。这篇文章主要介绍了利用Python计算圆周率π的相关资料,需要的朋友可以参考下

前言

A货:什么!你不会背圆周率(鄙夷的眼神) 3.1415926535 8979323846 26433… 

桥哥:我会算呀 !!!

一、圆周率的历史

1、中国

★ 魏晋时期,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法 (即「割圆术」),求得π的近似值3.1416。

★ 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。

★ 王蕃(229-267)发现了另一个圆周率值,这就是3.156, 但没有人知道他是如何求出来的(ps. 没开源呗

来源gaodai.ma#com搞##代!^码@网

!)。

★ 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。(ps. 在大部分人不知股股定理年代,真牛!)

2、印度

★ 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。

★ 婆罗门笈多采用另一套方法,推论出圆周率等于10的平方根。(ps. 跟张衡大佬的结果一致,但过程不同)

3、欧洲

★ 斐波那契算出圆周率约为3.1418。

★ 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537。他是第一个以无限乘积叙述圆周率的人。

★ 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。

★ 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8…../3×3×5×5×7×7×9×9……

★ 欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。

二、用python计算圆周率π

【方法】蒙特卡洛法

【程序设计思路】使用python random库随机生成点,落在正方形内,计算正方形内的圆内落点与正方形内落点之比,近似为面积之比,随机数越随机,数量越大越准确。

【软件环境】python 3.6(本程序可兼容python 2.x)

【代码】

 from random import random from time import perf_counter def calPI(N = 100): hits = 0 start = perf_counter() for i in range(1, N*N+1): x, y = random(), random() dist = pow(x ** 2 + y ** 2, 0.5) if dist <= 1.0: hits += 1 pi = (hits * 4) / (N * N) use_time = perf_counter() - start return pi, use_time PI, use_time = calPI(10000) print('use Monte Carlo method to calculate PI: {}'.format(PI)) print('use time: {} s'.format(use_time))

【结果展示】

震惊:10000次随机数,精确到3.1415了,把桥哥放在1000年前,可不得了

附:python输出指定精度的圆周率pi的值

首先像所有人都会的一样,本能地敲出

 import math val = math.pi print(val) 

这样就得到了pi的近似值3.141592653589793,要得到后面的小数,

不是直接可以简单粗暴的乘以10的指数

 import math val = math.pi * 100000000000000000 print(val) 

但是当val的小数部分都变成整数141592653589793的时候,并不会如我们所想的那样露出后几位整数,而是直接变成科学计数法3.141592653589793e+24,所以在小数点移位之后为了看到整数部分,我们必须把float转换成int

 import math def get_pi_value(x): if(x>0): num = math.pow(10,x) val = int(math.pi * num) print(val) else: print('输入有误') for i in range(10): get_pi_value(i * 10) 

运行结果:

输入有误
31415926535
314159265358979334144
3141592653589793216413703340032
31415926535897931797658451191693855162368
314159265358979323748068948991981337089580185157632
3141592653589793042280431964658831312838665295201939643957248
31415926535897934343019391492015828684494553443559665723073458675384320
314159265358979299628295535813807516164434328768456060679773689288809487458631680
3141592653589793231804887682686061504016619085797532053907788745336000826072569315489480704

总结

以上就是利用Python计算圆周率π的实例代码的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:利用Python计算圆周率π的实例代码

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址