• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch中Schedule与warmup_steps的用法说明

python 搞代码 4年前 (2022-01-08) 22次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了pytorch中Schedule与warmup_steps的用法说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教

1. lr_scheduler相关

 lr_scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=num_train_optimization_steps) 

其中args.warmup_steps可以认为是耐心系数

num_train_optimization_steps为模型参数的总更新次数

一般来说:

 num_train_optimization_steps = int(total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)

Schedule用来调节学习率,拿线性变换调整来说,下面代码中,step是当前迭代次数。

 def lr_lambda(self, step): # 线性变换,返回的是某个数值x,然后返回到类LambdaLR中,最终返回old_lr*x if step <self.warmup_steps: # 增大学习率 return float(step) / float(max(1, self.warmup_steps)) # 减小学习率 return max(0.0, float(self.t_total - step) / float(max(1.0, self.t_total - self.warmup_steps)))

在实际运行中,lr_scheduler.step()先将lr初始化为0. 在第一次参数更新时,此时step=1,lr由0变为初始值initial_lr;在第二次更新时,step=2,上面代码中生成某个实数alpha,新的lr=initial_lr *alpha;在第三次更新时,新的lr是在initial_lr基础上生成,即新的lr=initial_lr *alpha。

其中warmup_steps可以认为是lr调整的耐心系数。

由于有warmup_steps存在,lr先慢慢增加,超过warmup_steps时,lr再慢慢减小。

在实际中,由于训练刚开始时,训练数据计算出的grad可能与期望方向相反,所以此时采用较小的lr,随着迭代次数增加,lr线性增大,增长率为1/warmup_steps;迭代次数等于warmup_steps时,学习率为初始设定的学习率;迭代次数超过warmup_steps时,学习率逐步衰减,衰减率为1/(total-warmup_steps),再进行微调。

2. gradient_accumulation_steps相来源gaodai#ma#com搞*!代#%^码$网

gradient_accumulation_steps通过累计梯度来解决本地显存不足问题。

假设原来的batch_size=6,样本总量为24,gradient_accumulation_steps=2

那么参数更新次数=24/6=4

现在,减小batch_size=6/2=3,参数更新次数不变=24/3/2=4

在梯度反传时,每gradient_accumulation_steps次进行一次梯度更新,之前照常利用loss.backward()计算梯度。

补充:pytorch学习笔记 -optimizer.step()和scheduler.step()

optimizer.step()和scheduler.step()的区别

optimizer.step()通常用在每个mini-batch之中,而scheduler.step()通常用在epoch里面,但是不绝对,可以根据具体的需求来做。只有用了optimizer.step(),模型才会更新,而scheduler.step()是对lr进行调整。

通常我们有

 optimizer = optim.SGD(model.parameters(), lr = 0.01, momentum = 0.9) scheduler = lr_scheduler.StepLR(optimizer, step_size = 100, gamma = 0.1) model = net.train(model, loss_function, optimizer, scheduler, num_epochs = 100)

在scheduler的step_size表示scheduler.step()每调用step_size次,对应的学习率就会按照策略调整一次。

所以如果scheduler.step()是放在mini-batch里面,那么step_size指的是经过这么多次迭代,学习率改变一次。

以上就是pytorch中Schedule与warmup_steps的用法说明的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch中Schedule与warmup_steps的用法说明

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址