• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python函数式编程中itertools模块详解

python 搞代码 4年前 (2022-01-08) 26次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了在Python中使用itertools模块中的组合函数的教程,来自IBM官方技术文档,需要的朋友可以参考下,希望能够给你带来帮助

容器与可迭代对象

在正式开始前先补充一些基本概念在 Python 中存在容器 与 可迭代对象

  • 容器:用来存储多个元素的数据结构,例如 列表,元组,字典,集合等内容;
  • 可迭代对象:实现了 __iter__ 方法的对象就叫做可迭代对象。

从可迭代对象中还衍生出 迭代器 与 生成器:

  • 迭代器:既实现了 __iter__,也实现了 __next__ 方法的对象叫做迭代器;
  • 生成器:具有 yield 关键字的函数都是生成器。

这样就比较清楚了,可迭代对象的范围要大于容器。而且可迭代对象只能使用一次,使用完毕再获取值就会提示 StopIteration 异常。

除此之外,可迭代对象还有一些限制:

  • 不能对可迭代对象使用 len 函数;
  • 可以使用 next 方法处理可迭代对象,容器也可以通过 iter 函数转换成迭代器;
  • for 语句会自动调用容器的 iter 函数,所以容器也能被循环迭代。

count() 函数

count 函数一般与 range 函数对比学习,例如 range 函数需要定义生成范围的下限,上限与步长可选,而 count 函数不同,指定下限与步长,上限值不用声明。

函数原型声明如下

 count(start=0, step=1) --> count object 

测试代码如下,其中必须添加跳出循环的判定条件,否则代码会一直运行下去。

 from itertools import count a = count(5, 10) for i in a: print(i) if i > 100: break 

除此之外,count 函数还接收非整数参数,所以下述代码中定义的也是正确的。

 from itertools import count a = count(0.5, 0.1) for i in a: print(i) if i > 100: break 

cycle 函数

用 cycle 函数可以循环一组值,测试代码如下所示:

 from itertools import cycle x = cycle('梦想橡皮擦abcdf') for i in range(5): print(next(x), end=" ") print("\n") print("*" * 100) for i in range(5): print(next(x), end=" ") 

代码输出如下内容:

梦 想 橡 皮 擦

****************************************************************************************************
a b c d f

可以看到 cycle 函数与 for 循环非常类似。

repeat 函数

repeat 函数用于重复返回某个值,官方给出的函数描述如下所示:

 class repeat(object): """ repeat(object [,times]) -> create an iterator which returns the object for the specified number of times.  If not specified, returns the object endlessly. 

进行一下简单的测试,看一下

 from itertools import repeat x = repeat('橡皮擦') for i in range(5): print(next(x), end=" ") print("\n") print("*" * 100) for i in range(5): print(next(x), end=" ") 

怎么看这个函数,都好像没有太大用处。

enumerate 函数,添加序号

这个函数在前面的文章中,已经进行过简单介绍,并且该函数在 __builtins__ 包中,所以不再过多说明,基本格式如下所示:

 enumerate(sequence, [start=0]) 

其中 start 参数是下标起始位置。

accumulate 函数

该函数基于给定的函数返回一个可迭代对象,默认是累加效果,即第二个参数为 operator.add,测试代码如下:

 from itertools import accumulate data = [1, 2, 3, 4, 5] # 计算累积和 print(list(accumulate(data)))  # [1, 3, 6, 10, 15] 

针对上述代码,修改为累积。

 from itertools import accumulate import operator data = [1, 2, 3, 4, 5] # 计算累积 print(list(accumulate(data, operator.mul))) 

除此之外,第二个参数还可以为 max,min 等函数,例如下述代码:

 from itertools import accumulate data = [1, 4, 3, 2, 5] print(list(accumulate(data, max))) 

代码输出如下内容,其实是将 data 里面的任意两个值进行了比较,然后留下最大的值。

[1, 4, 4, 4, 5]

chain 与 groupby 函数

chain 函数用于将多个迭代器组合为单个迭代器,而 groupby 可以将一个迭代器且分为多个子迭代器。

首先展示一下 groupby 函数的应用:

 from itertools import groupby a = list(groupby('橡橡皮皮擦擦')) print(a) 

输出内容如下所示:

[(‘橡’, ),
(‘皮’, ),
(‘擦’, )]

为了使用 groupby 函数,建议先对原列表进行排序,因为它是有点像切片一样,发现不同的就分出一个迭代器。

chain 函数的用法如下,将多个迭代对象进行拼接:

 from itertools import groupby, chain a = list(chain('ABC', 'AAA', range(1,3))) print(a) 

zip_longest 与 zip

zip 函数在之前的博客中已经进行过说明,zip_longest 与 zip 的区别就是,zip 返回的结果以最短的序列为准,而 zip_longest 以最长的来源gao@!dai!ma.com搞$$代^@码网为准。

测试代码如下,自行比对结果即可。

 from itertools import zip_longest a = list(zip('ABC', range(5), [10, 20, 30, 40])) print(a) a = list(zip_longest('ABC', range(5), [10, 20, 30, 40])) print(a) 

zip_logest 如果碰到长度不一致的序列,缺少部分会填充 None。

tee 函数

tee 函数可以克隆可迭代对象,产出多个生成器,每个生成器都可以产出输入的各个元素。

 from itertools import tee a = list(tee('橡皮擦')) print(a) 

compress 函数

该函数通过**谓词(是否,True/False)**来确定对某个元素的取舍问题,最简单的代码如下所示:

 from itertools import compress a = list(compress('橡皮擦', (0, 1, 1))) print(a) 

islice、dropwhile、takewhile、filterfalse、filter

这几个函数都是从输入的可迭代对象中获取一个子集,而且不修改元素本身。

本部分只罗列各个函数的原型声明,具体用法直接参考使用即可。

 islice(iterable, stop) --> islice object islice(iterable, start, stop[, step]) --> islice object dropwhile(predicate, iterable) --> dropwhile object takewhile(predicate, iterable) --> takewhile object filterfalse(function or None, sequence) --> filterfalse object 

其中只有 filterfalse 中的参数是函数在前,序列在后。

测试代码如下,尤其注意第一个参数是 callable 即函数。

 from itertools import islice, dropwhile, takewhile, filterfalse a = list(filterfalse(lambda x: x in ["皮", "擦"], '橡皮擦')) print(a) 

总结

以上内容就是本文的全部内容,在使用无限迭代器函数 count,cycle,repeat 的时候,一定要注意即使停止。

以上就是Python函数式编程中itertools模块详解的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python函数式编程中itertools模块详解

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址