• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Tensorflow的梯度异步更新示例

python 搞代码 4年前 (2022-01-08) 24次浏览 已收录 0个评论

今天小来源gaodaimacom搞#^代%!码&网编就为大家分享一篇Tensorflow的梯度异步更新示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

背景:

先说一下应用吧,一般我们进行网络训练时,都有一个batchsize设置,也就是一个batch一个batch的更新梯度,能有这个batch的前提是这个batch中所有的图片的大小一致,这样才能组成一个placeholder。那么若一个网络对图片的输入没有要求,任意尺寸的都可以,但是我们又想一个batch一个batch的更新梯度怎么办呢?

操作如下:

先计算梯度:

 # 模型部分 Optimizer = tf.train.GradientDescentOptimizer(1) gradient = Optimizer.compute_gradients(loss)  # 每次计算所有变量的梯度 grads_holder = [(tf.placeholder(tf.float32, shape=g.get_shape()), v) for (g, v) in gradient]# 将每次计算的梯度保存 optm = Optimizer.apply_gradients(grads_holder) # 进行梯度更新 # 初始化部分 sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) # 实际训练部分 grads = []         # 定义一个空的列表用于存储每次计算的梯度 for i in range(batchsize): # batchsize设置在这里 x_i = ...       # 输入 y_real = ...      # 标签 grad_i = sess.run(gradient, feed_dict={inputs: x_i, outputs: y_real}) #梯度计算 grads.append(grad_i)  # 梯度存储 # 定义一个空的字典用于存储,batchsize中所有梯度的和 grads_sum = {} # 将网络中每个需要更新梯度的变量都遍历一遍 for i in range(len(grads_holder)): k = grads_holder[i][0] # 得到该变量名 # 将该变量名下的所有梯度求和,这里也可以求平均,求平均只需要除以batchsize grads_sum[k] = sum([g[i][0] for g in grads]) # 完成梯度更新 sess.run(optm,feed_dict=grads_sum) 

以上就是Tensorflow的梯度异步更新示例的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Tensorflow的梯度异步更新示例
喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址