• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pytorch对梯度进行可视化进行梯度检查教程

python 搞代码 4年前 (2022-01-08) 18次浏览 已收录 0个评论

今天小编就为大家分享一篇pytorch对梯度进行可视化进行梯度检查教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

目的: 在训练神经网络的时候,有时候需要自己写操作,比如faster_rcnn中的roi_pooling,我们可以可视化前向传播的图像和反向传播的梯度图像,前向传播可以检查流程和计算的正确性,而反向传播则可以大概检查流程的正确性。

实验

可视化rroi_align的梯度

1.pytorch 0.4.1及之前,需要声明需要参数,这里将图片数据声明为variable

im_data = Variable(im_data, requires_grad=True)

2.进行前向传播,最后的loss映射为一个一维的张量

 pooled_feat = roipool(im_data, rois.view(-1, 6)) res = pooled_feat.pow(2).sum() res.backward() 

3.注意求loss的时候采用更加复杂,或者更多的运算(这样在梯度可视化的时候效果才更加明显)

可视化效果

原始图片

梯度可视化图片

原图+梯度图

小结:

可以看到误差梯度的位置是正确的,误差是否正确,需要其他方式验证(暂时没有思路)

可以看到上面在求loss的时候为:loss = sum(x2),但是如果换成:loss = mean(x),效果就没有上面明显。

实验二的效果

loss = mean(x)

可以看到根本无法看到误差梯度的位置信息

实验三:loss = sum(x)

小结: 可以看到位置信息有差别,比如国徽部分,这会让人以为,来源gao@daima#com搞(%代@#码@网国徽部分只利用了左部分的信息,或者自己手写的操作误差索引不对。

可以通过两种方式进行验证

1.用更多,更复杂的运算求loss,比如pow,等

2.用matplotlib显示图片后,用鼠标可以指示每个点的具体的值,可以检测有误差梯度区域是否和无误差梯度区域有差别。

以上就是pytorch对梯度进行可视化进行梯度检查教程的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pytorch对梯度进行可视化进行梯度检查教程

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址