• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

Python验证码识别处理实例

python 搞代码 4年前 (2022-01-08) 27次浏览 已收录 0个评论

这篇文章主要介绍了Python验证码识别处理实例,实现过程讲解很详细,感兴趣的小伙伴们可以参考一下

一、准备工作与代码实例
(1)安装PIL:下载后是一个exe,直接双击安装,它会自动安装到C:\Python27\Lib\site-packages中去,
(2)pytesser:下载解压后直接放C:\Python27\Lib\site-packages(根据你安装的Python路径而不同),同时,新建一个pytheeer.pth,内容就写pytesser,注意这里的内容一定要和pytesser这个文件夹同名,意思就是pytesser文件夹,pytesser.pth,及内容都要一样!
(3)Tesseract OCR engine下载:下载后解压,tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。

二、验证
(1)原理:
验证码图像处理

验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像内的每个字符的文本矩阵。

  • 1、读取图片
  • 2、图片降噪
  • 3、图片切割
  • 4、图像文本输出

(2)验证字符识别

验证码内的字符识别主要以机器学习的分类算法来完成,目前我所利用的字符识别的算法为KNN(K邻近算法)和SVM (支持向量机算法),后面我 会对这两个算法的适用场景进行详细描述。

  • 1、获取字符矩阵
  • 2、矩阵进入分类算法
  • 3、输出结果

要验证的图片如下:

(3)、简单的命令:

 from pytesser import * image = Image.open('1.jpg-600') # Open image object using PIL print image_to_string(image)  # Run tesseract.exe on image 

然后运行:

或者直接:

 print image_file_to_string('fnord.tif') 

同样能输出结果!
(4)、复杂一点的
上面的只能对一些比较简单的做处理,一
原理:彩色转灰度,灰度转二值,二值图像识别

 # 验证码识别,此程序只能识别数据验证码 import Image import ImageEnhance import ImageFilter import sys from pytesser import * # 二值化 threshold = 140 table = [来源gaodai#ma#com搞*代#码网] for i in range(256): if i <threshold: table.append(0) else: table.append(1) #由于都是数字 #对于识别成字母的 采用该表进行修正 rep={'O':'0', 'i':'1','l':'1', 'z':'2', 's':'8' }; def getverify1(name): #打开图片 im=Image.open(name) #转化到灰度图 imgry=im.convert('L') #保存图像 imgry.save('g'+name) #二值化,采用阈值分割法,threshold为分割点 out=imgry.point(table,'1') out.save('b'+name) #识别 text #识别对吗 text.strip() text.upper(); for r in rep: text.replace(r,rep[r]) #out.save(text+'.jpg-600') print return getverify1('1.jpg-600') #注意这里的图片要和此文件在同一个目录,要不就传绝对路径也行 

运行后

以上就是本文的全部内容,希望对大家的学习有所帮助。

以上就是Python验证码识别处理实例的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:Python验证码识别处理实例

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址