• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

tensorflow-gpu2.3版本安装步骤

python 搞代码 4年前 (2022-01-08) 23次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了tensorflow-gpu2.3版本安装步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

一、硬件要求

首先,TensorFlow-gpu不同于CPU版本的地方在于,GPU版本必须有GPU硬件的支撑。TensorFlow对NVIDIA显卡的支持较为完备。
对于NVIDIA显卡,要求对于其算力不低于3.5。算力参考:

http://developer.nvidia.com/cuda-gpus

驱动版本注意:NVIDIA驱动程序需要418.x或者更高的版本。可以在命令行中输入

nvidia-smi

命令查看驱动版本。

我们可以看到我们的驱动程序满足上述条件。于是我们可以开始正式安装tensorflow-gpu了。

TensorFlow-gpu版本有两个重要的依赖库,分别是CUDA和cudnn。下面我首先来介绍CUDA的安装方法。
对于tensorflow-gpu2.3.0版本来说,对于CUDA的版本需要是10.1,cudnn版本号需要不小于7.6

二、 CUDA和cudnn的安装

1、查看本机的CUDA驱动适配版本

桌面右键打开英伟达控制面板,点击帮助->系统信息->组件

可以看到本机支持的是CUDA 10.2 版本,表示是不支持更高版本的。如果你升级了驱动,可能会支持更高版本,也可能不会提升。

所以就必须安装 10.2 及以下的版本,即我们可以正常安装CUDA10.1版本。

2、下载CUDA和cuDNN

CUDA10.1下载页面:

https://developer.nvidia.com/cuda-10.1-download-archive-base

cuDNN下载页面:

https://developer.nvidia.com/rdp/cudnn-archive

记得一定要下载与你所下载的CUDA版本相匹配的版本,这里我下载的是

3、安装CUDA和cudnn

找到你下载的CUDA,无脑点击下一步安装就行了。当然如果你想自定义的话要记住你选择的安装路径。本人推荐使用默认的安装地址。

CUDA安装完成后,打开命令行窗口,执行nvcc -V ,成功的话会返回cuda版本号。

解压cuDNN压缩包,可以看到bin、include、lib目录

打开 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA,这个是你CUDA安装的默认地址,如果自定义了安装路径,请打开你自定义的路径。

找到你安装的版本目录,打开,找到bin、include、lib目录,将cuDNN压缩包内对应的文件复制到bin、include、lib目录。

注意:是复制文件到bin、include、lib目录,不是复制目录。

4、添加环境变量

你需要在系统环境变量的Path项下添加几个路径

点击:新建
复制粘贴下列两个路径即可

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

最后点击确定即可

注意:选择你安装的路径,我使用的是默认的安装路径,所以是上面两个路径,如果是自定义的路径,请填写自己选择的路径。

5、检查安装结果

打开命令行窗口,在命令行窗口输入以下命令

 cd C:\Program Files\NVIDI<b style="color:transparent">来源gao@!dai!ma.com搞$$代^@码!网</b>A GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite //然后输入下一行命令 .\bandwidthTest.exe 

若出现以下信息,说明CUDA已经cuDNN安装成功

三、TensorFlow-gpu 2.3.0版本的安装

打开以管理员身份命令行窗口,执行以下命令

 pip install -i https://pypi.douban.com/simple/ tensorflow-gpu==2.3.0//使用豆瓣源来安装 

注意:一定要以管理员身份打开命令行窗口,否则会出现拒绝访问的错误!!!

等待安装完成后,输入pip list查看自己安装的tensorflow版本。

最后,编辑代码

 import tensorflow as tf print(tf.test.is_gpu_available()) 

若输出true则表示,安装成功。

四、写在最后

在文中,本人并未重新创建一个环境安装tensorflow2.3.0,由于tensorflow1.x版本与2.x版本差距较大,网上代码使用的版本有时是1.x有时是2.x,所以本人建议,大家再创建一个环境,参照以上步骤安装一下tensorflow1.x的版本。以备不时之需。

以上就是tensorflow-gpu2.3版本安装步骤的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:tensorflow-gpu2.3版本安装步骤

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址