• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

pandas DataFrame 赋值的注意事项说明(index)

python 搞代码 4年前 (2022-01-08) 40次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了pandas DataFrame 赋值的注意事项说明(index),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一 pandas DataFrame一列赋值问题

说明,把b的列赋值给a

情况1:a,b index设置相同

如下代码

 import pandas as pd import numpy as np a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) b = pd.DataFrame(np.array([11,22,33,44]),index=list('abcd'),columns=['m']) a['m'] = b['m'] print(a)

上述代码结果如下

 w  x  y  z  m a  0  1  2  3 11 b  4  5  6  7 22 c  8  9 10 11 33 d 12 13 14 15 44

情况一是最基本的情况,结果也符合预期,之所以符合预期是因为a,b都设有同样的index,赋值操作按照index来到。如果b不设置Index,而是使用默认的index呢?

情况2:b的index采用默认值

代码如下

 import pandas as pd import numpy as np a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) b = pd.DataFrame(np.array([11,22,33,44]),columns=['m']) a['m'] = b['m'] print(a)

结果如下

 w  x  y  z  m a  0  1  2  3 NaN b <div style="color:transparent">来源gaodai.ma#com搞#代!码网</div> 4  5  6  7 NaN c  8  9 10 11 NaN d 12 13 14 15 NaN

情况二,结果超出了想象,b中的index为0,1,2,3与a中的index(‘a’,‘b’,‘c’,‘d’)不同,在赋值的过程中,是按照a中的index在b中找index相同位置的值,由于index不同,因此,给a赋值为NaN

情况三 : b中的部分Index与a中的相同

代码如下

 import pandas as pd import numpy as np a = pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz')) b = pd.DataFrame(np.array([11,22,33,44]),index=list('arpb'),columns=['m']) a['m'] = b['m'] print(a)

结果如下

 w  x  y  z   m a  0  1  2  3 11.0 b  4  5  6  7 44.0 c  8  9 10 11  NaN d 12 13 14 15  NaN

由情况三结果可知,只有Index相同的行,赋值才能成功

总结:

从以上可以看出,Pandas DataFrame严格按照Index进行赋值,如果Index不同的话,则赋值为NaN

补充:python编程过程中DataFrame修改特定单元格值后原数据不变的一个解决方案

最近在参加了一个比赛,里面设计到数据清洗的工作,需要对一些异常值作出修改,往常我都是这样操作的

 df[condition]['column'].iloc[0:3] = ......

或者

 df[condition]['column'][0:3] = ......

里面condition代表满足条件的逻辑表达式,column表示列名

一般还是管用的,但偶尔会出现错误,主要是df[condition]这种表达在python里面是不够规范的,因此运行以后单元格容易赋值失败。在尝试了很多种方法之后,最后还是使用规范的loc或者iloc表达

 df.loc[[row condition],['column']] = ......

例如:

 NA.loc[[23,29,49],'北美整体规模'] = ......

或者

 df.iloc[np.where(condition),[1:3]]

注意loc里面接的是具体的行列名称,iloc里面接的是满足条件的行列名称所对应的位置数字列表,切忌弄混!

以上就是pandas DataFrame 赋值的注意事项说明(index)的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:pandas DataFrame 赋值的注意事项说明(index)

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址