• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python-opencv在有噪音的情况下提取图像的轮廓实例

python 搞代码 4年前 (2022-01-08) 20次浏览 已收录 0个评论

下面小编就为大家带来一篇python-opencv在有噪音的情况下提取图像的轮廓实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体。

比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多:

所以本文增加了去掉噪声的部分。

首先加载原始图像,并显示图像

 img = cv2.imread("temp.jpg-600")    #载入图像 h, w = img.shape[:2]      #获取图像的高和宽 cv2.imshow("Origin", img) 

然后进行低通滤波处理,进行降噪

 blured = cv2.blur(img,(5,5))    #进行滤波去掉噪声 cv2.imshow("Blur", blured)     #显示低通滤波后的图像

使用floodfill来去掉目标周围的背景,泛洪填充类始于ps的魔棒工具,这里用来清除背景。

然后转换成灰度图

 gray = cv2.cvtColor(blured,cv2.COLOR_BGR2GRAY) cv2.imshow("gray", gray) 

此时目标图像周围有写不光滑,还有一些噪声,因此进行开闭运算,得到比较光滑的目标

 #定义结构元素 kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50, 50)) #开闭运算,先开运算去除背景噪声,再继续闭运算填充目标内的孔洞 opened = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel) cv2.imshow("closed", closed)

接着转换成二值图以便于获取图像的轮廓

最后进行轮廓提取,抓取到目标

 #找到轮廓 _,contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #绘制轮廓 cv2.drawContours(img,contours,-1,(0,0,255),3) #绘制结果 cv2.imshow("result", img)

全部代码如下

 #coding=utf-8 import cv2 import numpy as np img = cv2.imread("temp.jpg-600")    #载入图像 h, w = img.shape[:2]      #获取图像的高和宽 cv2.imshow("Origin", img)     #显示原始图像 blured = cv2.blur(img,(5,<i style="color:transparent">来源gaodai$ma#com搞$代*码*网</i>5))    #进行滤波去掉噪声 cv2.imshow("Blur", blured)     #显示低通滤波后的图像 mask = np.zeros((h+2, w+2), np.uint8)  #掩码长和宽都比输入图像多两个像素点,满水填充不会超出掩码的非零边缘 #进行泛洪填充 cv2.floodFill(blured, mask, (w-1,h-1), (255,255,255), (2,2,2),(3,3,3),8) cv2.imshow("floodfill", blured) #得到灰度图 gray = cv2.cvtColor(blured,cv2.COLOR_BGR2GRAY) cv2.imshow("gray", gray) #定义结构元素 kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(50, 50)) #开闭运算,先开运算去除背景噪声,再继续闭运算填充目标内的孔洞 opened = cv2.morphologyEx(gray, cv2.MORPH_OPEN, kernel) closed = cv2.morphologyEx(opened, cv2.MORPH_CLOSE, kernel) cv2.imshow("closed", closed) #求二值图 ret, binary = cv2.threshold(closed,250,255,cv2.THRESH_BINARY) cv2.imshow("binary", binary) #找到轮廓 _,contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) #绘制轮廓 cv2.drawContours(img,contours,-1,(0,0,255),3) #绘制结果 cv2.imshow("result", img) cv2.waitKey(0) cv2.destroyAllWindows()

以上就是python-opencv在有噪音的情况下提取图像的轮廓实例的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python-opencv在有噪音的情况下提取图像的轮廓实例

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址