• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

基于tensorflow指定GPU运行及GPU资源分配的几种方式小结

python 搞代码 4年前 (2022-01-08) 23次浏览 已收录 0个评论

今天小编就为大家分享一篇基于tensorflow指定GPU运行及GPU资源分配的几种方式小结,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1. 在终端执行时设置使用哪些GPU(两种方式)

(1) 如下(export 语句执行一次就行了,以后再运行代码不用执行)

(2) 如下

2. 代码中指定(两种方式)

(1)

 import os os.environ["CUDA_VISIBLE_DEVICES"] = "1"

(2)

 # Creates a graph. with tf.device('/gpu:1'): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') c = tf.matmul(a, b) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print sess.run(c)

若想使用多个GPU,如下

 c = [] for d in ['/gpu:0', '/gpu:1']: with tf.device(d): a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3]) b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2]) c.append(tf.matmul(a, b)) with tf.device('/cpu:0'): sum = tf.add_n(c) # Creates a session with log_device_placement set to True. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) # Runs the op. print sess.run(sum)

3.GPU资源分配

(1) 设置允许GPU增长

 config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config, ...)

(2) 设置每个GPU内存使用多少

 config = tf.ConfigProto() config.gpu_options.per<strong style="color:transparent">来源gao@daima#com搞(%代@#码网</strong>_process_gpu_memory_fraction = 0.4 session = tf.Session(config=config, ...)

以上就是基于tensorflow指定GPU运行及GPU资源分配的几种方式小结的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:基于tensorflow指定GPU运行及GPU资源分配的几种方式小结

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址