• 欢迎访问搞代码网站,推荐使用最新版火狐浏览器和Chrome浏览器访问本网站!
  • 如果您觉得本站非常有看点,那么赶紧使用Ctrl+D 收藏搞代码吧

python用pyecharts实现地图数据可视化

python 搞代码 4年前 (2022-01-08) 49次浏览 已收录 0个评论
文章目录[隐藏]

这篇文章主要介绍了python用pyecharts实现地图数据可视化,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下

有的时候,我们需要对不同国家或地区的某项指标进行比较,可简单通过直方图加以比较。但直方图在视觉上并不能很好突出地区间的差异,因此考虑地理可视化,通过地图上位置(地理位置)和颜色(颜色深浅代表数值差异)两个元素加以体现。在本文案例中,基于第三方库pyecharts,对中国各省2010-2019年的GDP进行绘制。

我们先来看看最终

关于绘图数据

基于时间和截面两个维度,可把数据分为截面数据、时间序列及面板数据。在本文案例中,某一年各省的GDP属于截面数据,多年各省的GDP属于面板数据。因此,按照先易后难的原则,先对某一年各省的GDP进行地理可视化,再进一步构建for循环对多年各省的GDP进行可视化,形成最终的时间轮播图。

数据来源:本文案例使用的GDP数据来源于国家统计局官网,可在线下载到本地,保存为csv或excel格式,用pandas中的DataFrame进行读取。

地理可视化

一、全国各省单年GDP的可视化

在pyecharts中可使用Map类型实现地理可视化,其原理是通过不同颜色填充以展现不同的数据,options实现图表的调整及修饰。代码展示如下:

 import pa<div style="color:transparent">来源gaodai.ma#com搞##代!^码网</div>ndas as pd from pyecharts.charts import Map import pyecharts.options as opts frame = pd.read_csv('C:\\Users\\dell\\Desktop\\分省年度数据2.csv',encoding='GBK') map = Map() map.add("我国地区的GDP",frame[['地区','2019年']].values.tolist(),"china") map.set_global_opts(visualmap_opts=opts.VisualMapOpts(min_=500,max_=12000)) map.render("2019年全国各地区GDP.html") 

解析:add()来实现了数据的加载,在配置3个参数中――第1个是图的标题,第2个通过.values.tolist()加载要显示的数据,第3个”china”确保显示的地图类型是中国。有个细节需要注意,Map 使用的中国各省份需要将全部的省、市、自治区等去掉。set_global_opts()实现了用颜色标记数据的数值大小,参数min_和max_分别代表最小值和最大值。render()用于生成并保存图像。

效果如下:

然而数据分布并不平均,可以通过is_piecewise 属性表述分段自定义不同的颜色区间:

 geo.set_global_opts(visualmap_opts=opts.VisualMapOpts(     is_piecewise=True,     pieces=[         {"min":0,"max":10000,"label":"1~10000","color":"cyan"},         {"min":10001,"max":20000,"label":"10001~20000","color":"yellow"},         {"min":20001,"max":50000,"label":"20001~50000","color":"orange"},         {"min":50001,"max":80000,"label":"50001~80000","color":"coral"},         {"min":80001,"max":120000,"label":"80001~120000","color":"red"},     ]    )) 

效果如下:

二、全国各省多年GDP的可视化

由于要绘制2010-2019年的GDP数据,可以考虑构建一个for循环,通过str(i)+”年”的形式访问数据表格中处于不同列的各年GDP数据。绘制轮播图可考虑调用Timeline,代码如下:

 import pandas as pd from pyecharts import options as opts from pyecharts.charts import Map, Timeline frame = pd.read_csv('C:\\Users\\dell\\Desktop\\分省年度数据2.csv',encoding='GBK') tl = Timeline() for i in range(2010, 2020):     map0 = (         Map()         .add("省份",frame[['地区',str(i)+'年']].values.tolist(), "china")         .set_global_opts(             title_opts=opts.TitleOpts(title="Map-{}年GDP(亿元)".format(i)),             visualmap_opts=opts.VisualMapOpts(                 is_piecewise=True,                 pieces=[                     {"min":0,"max":10000,"label":"1~10000","color":"cyan"},                     {"min":10001,"max":20000,"label":"10001~20000","color":"yellow"},                     {"min":20001,"max":50000,"label":"20001~50000","color":"orange"},                     {"min":50001,"max":80000,"label":"50001~80000","color":"coral"},                     {"min":80001,"max":120000,"label":"80001~12000","color":"red"},                 ]   ),))     tl.add(map0, "{}年".format(i)) tl.render("2010~2019年全国各地区GDP.html") 

效果如下:

本案例的实现并不复杂,在pyecharts官方的参考案例基础上稍加改动即可实现。作为一名初学者,模仿案例是提升功力的重要途径,通过模仿可以有效吃透代码要具体实现的功能,量变到质变,就能根据自己工作和学习的需要进行灵活应用。

以上就是python用pyecharts实现地图数据可视化的详细内容,更多请关注gaodaima搞代码网其它相关文章!


搞代码网(gaodaima.com)提供的所有资源部分来自互联网,如果有侵犯您的版权或其他权益,请说明详细缘由并提供版权或权益证明然后发送到邮箱[email protected],我们会在看到邮件的第一时间内为您处理,或直接联系QQ:872152909。本网站采用BY-NC-SA协议进行授权
转载请注明原文链接:python用pyecharts实现地图数据可视化

喜欢 (0)
[搞代码]
分享 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址